Download presentation

Published byTalon Lucken Modified over 3 years ago

1
**INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION**

Today’s Objectives: Students will be able to: Find the kinematic quantities (position, displacement, velocity, and acceleration) of a particle traveling along a straight path. In-Class Activities: • Relations between s(t), v(t), and a(t) for general rectilinear motion. • Relations between s(t), v(t), and a(t) when acceleration is constant. “Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU

2
**“Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU**

APPLICATIONS The motion of large objects, such as rockets, airplanes, or cars, can often be analyzed as if they were particles. Why? If we measure the altitude of this rocket as a function of time, how can we determine its velocity and acceleration? “Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU

3
**APPLICATIONS (continued)**

A train travels along a straight length of track. Can we treat the train as a particle? If the train accelerates at a constant rate, how can we determine its position and velocity at some instant? “Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU

4
**“Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU**

An Overview of Mechanics Mechanics: The study of how bodies react to forces acting on them. Statics: The study of bodies in equilibrium. Dynamics: 1. Kinematics – concerned with the geometric aspects of motion 2. Kinetics - concerned with the forces causing the motion “Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU

5
**RECTILINEAR KINEMATICS: CONTINIOUS MOTION**

(Section 12.2) A particle travels along a straight-line path defined by the coordinate axis s. The position of the particle at any instant, relative to the origin, O, is defined by the position vector r, or the scalar s. Scalar s can be positive or negative. Typical units for r and s are meters (m) or feet (ft). The displacement of the particle is defined as its change in position. Vector form: r = r’ - r Scalar form: s = s’ - s The total distance traveled by the particle, sT, is a positive scalar that represents the total length of the path over which the particle travels. “Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU

6
VELOCITY Velocity is a measure of the rate of change in the position of a particle. It is a vector quantity (it has both magnitude and direction). The magnitude of the velocity is called speed, with units of m/s or ft/s. The average velocity of a particle during a time interval t is vavg = r/t The instantaneous velocity is the time-derivative of position. v = dr/dt Speed is the magnitude of velocity: v = ds/dt Average speed is the total distance traveled divided by elapsed time: (vsp)avg = sT/ t “Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU

7
**“Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU**

ACCELERATION Acceleration is the rate of change in the velocity of a particle. It is a vector quantity. Typical units are m/s2 or ft/s2. The instantaneous acceleration is the time derivative of velocity. Vector form: a = dv/dt Scalar form: a = dv/dt = d2s/dt2 Acceleration can be positive (speed increasing) or negative (speed decreasing). As the book indicates, the derivative equations for velocity and acceleration can be manipulated to get a ds = v dv “Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU

8
**SUMMARY OF KINEMATIC RELATIONS:**

RECTILINEAR MOTION • Differentiate position to get velocity and acceleration. v = ds/dt ; a = dv/dt or a = v dv/ds • Integrate acceleration for velocity and position. Velocity: ò = t o v dt a dv s ds or ò = t o s dt v ds Position: • Note that so and vo represent the initial position and velocity of the particle at t = 0. “Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU

9
**CONSTANT ACCELERATION**

The three kinematic equations can be integrated for the special case when acceleration is constant (a = ac) to obtain very useful equations. A common example of constant acceleration is gravity; i.e., a body freely falling toward earth. In this case, ac = g = 9.81 m/s2 = 32.2 ft/s2 downward. These equations are: t a v c o + = yields ò dt dv 2 s (1/2)a ds ) - (s 2a (v “Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU

10
**“Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU**

EXAMPLE Given: A motorcyclist travels along a straight road at a speed of 27 m/s. When the brakes are applied, the motorcycle decelerates at a rate of -6t m/s2. Find: The distance the motorcycle travels before it stops. Plan: Establish the positive coordinate s in the direction the motorcycle is traveling. Since the acceleration is given as a function of time, integrate it once to calculate the velocity and again to calculate the position. “Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU

11
**“Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU**

EXAMPLE (continued) Solution: 1) Integrate acceleration to determine the velocity. a = dv / dt => dv = a dt => => v – vo = -3t2 => v = -3t2 + vo ò - = t o v dt dv ) 6 ( 2) We can now determine the amount of time required for the motorcycle to stop (v = 0). Use vo = 27 m/s. 0 = -3t => t = 3 s 3) Now calculate the distance traveled in 3s by integrating the velocity using so = 0: v = ds / dt => ds = v dt => => s – so = -t3 + vot => s – 0 = (3)3 + (27)(3) => s = 54 m ò + - = t o s dt v ds ) 3 ( 2 “Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU

12
**“Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU**

READING QUIZ 1. In dynamics, a particle is assumed to have _________. A) both translation and rotational motions B) only a mass C) a mass but the size and shape cannot be neglected D) no mass or size or shape, it is just a point 2. The average speed is defined as __________. A) Dr/Dt B) Ds/Dt C) sT/Dt D) None of the above. 1. B 2. C “Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU

13
**“Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU**

CONCEPT QUIZ t = 2 s t = 7 s 3 m/s 5 m/s 1. A particle moves along a horizontal path with its velocity varying with time as shown. The average acceleration of the particle is _________. A) 0.4 m/s2 B) 0.4 m/s2 C) 1.6 m/s2 D) 1.6 m/s2 2. A particle has an initial velocity of 30 ft/s to the left. If it then passes through the same location 5 seconds later with a velocity of 50 ft/s to the right, the average velocity of the particle during the 5 s time interval is _______. A) 10 ft/s B) 40 ft/s C) 16 m/s D) 0 ft/s Answers: 1. D 2. D “Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU

14
**“Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU**

GROUP PROBLEM SOLVING Given: Ball A is released from rest at a height of 40 ft at the same time that ball B is thrown upward, 5 ft from the ground. The balls pass one another at a height of 20 ft. Find: The speed at which ball B was thrown upward. Plan: Both balls experience a constant downward acceleration of 32.2 ft/s2. Apply the formulas for constant acceleration, with ac = ft/s2. “Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU

15
**GROUP PROBLEM SOLVING (continued)**

Solution: 1) First consider ball A. With the origin defined at the ground, ball A is released from rest ((vA)o = 0) at a height of 40 ft ((sA )o = 40 ft). Calculate the time required for ball A to drop to 20 ft (sA = 20 ft) using a position equation. sA = (sA )o + (vA)ot + (1/2)act2 20 ft = 40 ft + (0)(t) + (1/2)(-32.2)(t2) => t = s 2) Now consider ball B. It is throw upward from a height of 5 ft ((sB)o = 5 ft). It must reach a height of 20 ft (sB = 20 ft) at the same time ball A reaches this height (t = s). Apply the position equation again to ball B using t = 1.115s. sB = (sB)o + (vB)ot + (1/2) ac t2 20 ft = 5 + (vB)o(1.115) + (1/2)(-32.2)(1.115)2 => (vB)o = 31.4 ft/s “Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU

16
**“Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU**

ATTENTION QUIZ 1. A particle has an initial velocity of 3 ft/s to the left at s0 = 0 ft. Determine its position when t = 3 s if the acceleration is 2 ft/s2 to the right. A) 0.0 ft B) 6.0 ft C) 18.0 ft D) 9.0 ft 2. A particle is moving with an initial velocity of v = 12 ft/s and constant acceleration of 3.78 ft/s2 in the same direction as the velocity. Determine the distance the particle has traveled when the velocity reaches 30 ft/s. A) 50 ft B) 100 ft C) 150 ft D) 200 ft Answers: 1. A 2. B “Dynamics by Hibbeler,” Dr. S. Nasseri, MET Department, SPSU

Similar presentations

Presentation is loading. Please wait....

OK

Kinematics of Particles

Kinematics of Particles

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on human nutrition and digestion chapter Ppt on unity in diversity images Ppt on limits and derivatives help Ppt on history of english literature Ppt on mpeg audio compression and decompression software Ppt on colonialism and tribal societies Ppt on conservation of nonrenewable resources Pdf to ppt online conversion Ppt on tokyo stock exchange Ppt on cross docking pictures