Presentation is loading. Please wait.

Presentation is loading. Please wait.

 の光発生反応 中村 聡 (阪大理) 共同研究者: 慈道 大介 ( 首都大) Prog. Theor. Exp. Phys. (2014) 023D01.

Similar presentations


Presentation on theme: " の光発生反応 中村 聡 (阪大理) 共同研究者: 慈道 大介 ( 首都大) Prog. Theor. Exp. Phys. (2014) 023D01."— Presentation transcript:

1  の光発生反応 中村 聡 (阪大理) 共同研究者: 慈道 大介 ( 首都大) Prog. Theor. Exp. Phys. (2014) 023D01

2 Introduction  1st excited state of  E   _ (MeV) (1405, -25)  * Existence “predicted” by Dalitz and Tuan (1960) in analysis of KN scattering length with  model * First experimental evidence in   p   (1961) _ _ Alston et al., PRL 6 (1961)   p  

3 Controversial  structure 3-quark + mass splitting term Collins & Georgi, PRD 59 (1999) Schat et al., PRL 88 (2002) 5-quark Strottman, PRD 20 (1979) Zou, NPA 835 (2010) too many states Meson-baryon molecule Dalitz & Tuan, PRL 2 (1959) Oset & Ramos, NPA 635 (1998) Too light to interpret as naïve 3-quark state

4 (i,j,k : meson-baryon channel)  as pole of Scattering amplitude Coupled-channel scattering equation for T-matrix (scattering amplitude) Near pole position : T-matrix for real energy W is used to calculate observables (cross sections, etc.) Analytic continuation to complex energy W Resonance is identified by :mass width Resonance pole can be extracted from analyzing data

5 Why want to know  pole(s) ? Internal structure of  constraint on hadron structure models Nuclear structure of deeply bound kaonic nuclei (e.g., K - pp ) K - p -  amplitude is essential input current status for K - pp : rather large model dependence B.E. = 10 – 100 MeV, Width = 35 – 110 MeV

6 Pole structure of  Two-pole cloudy bag model Veit et al. PRD 31, 1033 (1985) chiral unitary model Jido et al. NPA 725, 181 (2002) Single-pole potential models Fink et al., PRC 41, 2720 (1990) Akaishi-Yamazaki model PRC 65, (2002) Still, pole structure has not been established

7 Attempt to determine  pole from data E   _ (MeV) (1405, -25)  Ideal experiment    Impossible !      } Energy at  Two-meson production experiment   difficulty in determining  pole structure

8 How to extract  pole from two-meson production data Construct a model that consists of production mechanism + final state interaction (FSI) FSI contains MB   amplitude Fit data with adjustable parameters in production mechanism and MB   amplitude Extract poles from MB   amplitude But, good data had not been available until recently

9 Photo-production of  LEPS/Spring-8 Ahn et al., NPA 721, 715 (2003) LEPS/Spring-8 Niiyama et al., PRC 78, (2008) CLAS/JLab Moriya et al., PRC 87, (2013) (  invariant mass distribution) PRC 88, (2013) (    angular distribution)  p         Experiments

10  line-shape data from CLAS/JLab  p         Moriya et al., PRC 87, (2013) Cleanest data for   progress toward pole extraction

11 What to do here ? Production mechanism + s-wave rescattering Gauge invariance at tree level Fit data Develop  UM-based model for  p    

12 MODEL Chiral unitary model Photo-production mechanism

13 Chiral Unitary Model (  UM) : Weinberg-Tomozawa interaction Coupled-channel scattering equation Oset & Ramos, NPA (1998) Oset et al., PLB (2002)

14 Chiral Unitary Model (  UM) On-shell factorization  renormalization scale ) (W : total energy) Dimensional regularization _ Subtraction constant, fitted to data

15 Chiral Unitary Model (  UM) Good description of   p    N, ,  data above and near   p threshold _

16 Chiral Unitary Model (  UM) pole position 1390  66i 1426  16i    Coupling strength Jido et al. NPA 725, 181 (2002) Two-pole structure

17 Photo-production Model Minimal substitution

18 Photo-production Model Minimal substitution

19 Photo-production Model Minimal substitution

20 Photo-production Model

21 Rescattering  UM s-wave amplitude ( 

22 Fit data Subtraction constants (10 parameters) contact production mechanism (30 parameters) (total energy (W) dependent complex couplings, gauge invariant) Form factors (1 parameters)

23 * Good description of line-shape data * Different peak position for different charge states  Two-pole structure plays a role ?? Results

24 Resonant and non-resonant contributions Non-resonantResonant

25 Resonant and non-resonant contributions * Significant non-resonant contribution  Shifting peak positions Same resonance peak position  2 nd pole (1426  –  16i) seems dominant  Single-pole model works as well ??

26 Isospin decomposition I=0 (  dominance Small but nonnegligible effect of I=2 contribution

27 Single Breit-Wigner model Single Breit-Wigner model works ! 1 pole solution is still not excluded

28 K + angular distribution Moriya et al, PRC 88, (2013) New data from CLAS/JLab for  p     Fitting only lineshape  very different angular distributions is still possible  K + angle data are important to constrain production mechanism

29 K + angular distribution (not fitted) Overall trend is captured in our model  More fit will be done   pole structure will be extracted

30 Summary Pole structure of  has not been well confirmed by data New CLAS data for  p     cleanest data in  region  hope to extract  pole structure  p     model is developed with  UM amplitude -- meson-exchange + contact production mechanism (gauge tree level) -- Line-shape data are well fitted -- Single Breit-Wigner model also can fit line-shape data

31 Future work Fit K + angle data from CLAS  UM amplitude (subtraction constant) is also varied  extraction of  pole structure Use different contact interactions, form factors  study model dependence of extracted poles

32 Future work One- or two-pole structure ? Very new data from CLAS (yesterday) for electroproduction of  PRC 88, (2013) 1.6 (GeV/c) 2 < Q 2 < 3.0 (GeV/c) 2 Fairly clear two peaks !  two-pole solution ? Higher statistics data hoped !

33 Possible ideas for  photoproduction experiments at ELPH, LEPS, LEPS2 Data wanted for less model-dependent determination of  properties Double-differential cross sections Polarization observable Multi-channel data  ,    unsubtracted data (cf. CLAS data)  p              

34 Backups

35    p         Thomas et al., NPB 56, 15 (1973)    p             Crystall Ball, PRC 70, (2004)    d   n    n  J-PARC proposal Attempt to determine pole structure of  Hadron beam experiments Confront theory with data below KN threshold

36  UM-based calculation for    p      Hyodo et al., PRC 68, (2003) …  p  Data: Thomas et al., NPB (1973)

37  UM-based calculation for    p        Magas et al., PRL 95, (2005) + Data: Crystall Ball, PRC (2004) the peak is due to second pole d  d M I (arbitrary scale)

38 K + angular distribution Moriya et al, arXiv: Very new data from CLAS/JLab for  p    

39 LEPS/SPring8 data Forward K + kinematics of  p     Y* LEPS and CLAS data are consistent at low energies No LEPS data for normalized line shape for  p       We analyze only CLAS data Comparison with CLAS data for  p     Y* Niiyama et al., PRC (2008) CLAS LEPS (Moriya et al, arXiv: )

40 Lagrangians

41

42 Hidden local symmetry model fixed by V   M decay width; relative phase by SU(3)

43 Tensor coupling SU(3) relation for magnetic coupling

44 Nacher et al., PLB 455, 55 (1999) Niiyama et al., PRC (2008) Nacher et al., PLB (1999) Calculated line shape is : Wrong in ordering     and     Too small cross section ?

45 P-wave scattering model (  UM) + (relativistic correction to WT term) Jido et al., PRC 66, (2002)

46 Is  exotic ? Naïve 3-quark picture is not likely Nucleon (1/2 + ) 940 MeV N(1535) (1/2 - ) 1535 MeV  (1/2 + ) 1116 MeV  (1405) (1/2 - ) 1405 MeV Radial excitation to L=1 costs  600 MeV  300 MeV

47  UM-based calculation for  p     Nacher et al., PLB 455, 55 (1999) W=2.02 GeV

48  in Lattice QCD Quench 3-quark  GeV Nemoto et al., PRD (2003) Quench 5-quark  GeV Ishii et al., PTP (2007) Full 3-quark  GeV Takahashi et al., PRD (2010) Full 3-quark  GeV Menadue et al., PRL (2012) (variational analysis) operator M 

49  UM-based calculation for  p     Nacher et al., PLB 455, 55 (1999) Contact photo-production (WT term) + s-wave  UM rescattering

50 Nacher et al., PLB (1999) W=2.02 GeV Comparison with CLAS data K. Moriya et al. PRC (2013) Calculated line-shape is : wrong in ordering     and     Overestimate in magnitude

51 Contributions from mechanisms Small contribution from WT interference changed by subtraction const. Large contribution from contact terms short-range dynamics play important role


Download ppt " の光発生反応 中村 聡 (阪大理) 共同研究者: 慈道 大介 ( 首都大) Prog. Theor. Exp. Phys. (2014) 023D01."

Similar presentations


Ads by Google