Download presentation

Presentation is loading. Please wait.

Published byRylee Crosthwaite Modified about 1 year ago

1

2
f(x) = x 2 f(x) = 2x 2 Parameter ‘a’ increases from 1 to 2 Parabola stretches vertically

3
f(x) = x 2 Parameter ‘a’ decreases from 1 to Parabola compresses vertically f(x) = x 2

4
f(x) = -x 2 Parameter ‘a’ changes from 1 to -1 Parabola inverts vertically

5
f(x) = -x 2 f(x) = -2x 2 Parameter ‘a’ moves from -1 to -2 Parabola stretches vertically

6
If f(x) = x 2 and g(x) = ax 2, then the ordered pairs for g(x) can be determined by applying the following adjustment to those from f(x). f(x) = x 2 xf(x) xg(x) g(x) = 2x 2

7
Parameter ‘b’ increases from 1 to 2 Function compresses horizontally

8
Parameter ‘b’ decreases from 1 to 0.5 Function stretches horizontally

9
Parameter ‘b’ changes from 1 to -1 Parabola inverts horizontally

10
Parameter ‘b’ increases from 1 to 2 f(x) = |x| f(x) = |2x| Function compresses horizontally

11
Parameter ‘b’ decreases from 1 to ½ f(x) = |x| f(x) = |½x| Function stretches horizontally

12
If f(x) = |x| and g(x) = |bx|, then the ordered pairs for g(x) can be determined by applying the following adjustment to those from f(x). Impact of parameter ‘b’ -Horizontal Scale change As ‘b’ moves further from zero, the function compresses horizontally As ‘b’ moves closer to zero, the function stretches horizontally If parameter ‘b’ changes its sign, the graph will invert horizontally f(x) = |x| xf(x) xg(x) g(x) = |2x|

13
Parameter ‘h’ increases from 0 to 4 Function translates 4 units to the right

14
f(x) = |x| f(x) = |x + 2| Parameter ‘h’ decreases from 0 to -2 Function translates 2 units to the left

15
Parameter ‘h’ decreases from 0 to -7 Function translates horizontally 7 units to the left

16
If f(x) = |x| and g(x) = |x - h|, then the ordered pairs for g(x) can be determined by applying the following adjustment to those from f(x). Impact of parameter ‘h’ -Horizontal Translation As ‘h’ increases from zero, the function translates to the right As ‘h’ decreases from zero, the function translates to the left f(x) = |x| xf(x) xg(x) g(x) = |x + 2|

17
f(x) = x 2 f(x) = x Parameter ‘k’ increases from 0 to 2 Parabola translates vertically up 2 units

18
Parameter ‘k’ decreases from 0 to -7 Function translates vertically 7 units down

19
Parameter ‘k’ increases from 0 to 3 Function translates 3 units up

20
If f(x) = |x| and g(x) = |x| + k, then the ordered pairs for g(x) can be determined by applying the following adjustment to those from f(x). Impact of parameter ‘k’ -Vertical Translation As ‘k’ increases from zero, the function translates up As ‘k’ decreases from zero, the function translates down f(x) = |x| xf(x) xg(x) g(x) = |x| + 2

21
f(x) = x 2 f(x) = 2(x – 4) Parameter ‘a’, ‘h’ and ‘k’ all change Parabola stretches vertically, translates to the right and translates down

22
Parameter ‘a’, ‘b’ and ‘h’ all change Function stretches vertically, inverts horizontally and translates 3 to the right.

23
Impact of parameters ‘a’, ‘b’, ‘h’ and ‘k’ xf(x) xg(x)

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google