Download presentation

Presentation is loading. Please wait.

Published byKara Hobson Modified over 2 years ago

1
Symmetry & boundary conditions Joël Cugnoni, LMAF/EPFL, 2009

2
Using symmetries in FE models A FE model is symmetric if and only if geometry, materials and loading are symmetric !! Symmetries help to: Reduce the model size => finer meshes => better accuracy! Simplify the definition of isostatic boundary conditions Reduce the post-processing effort (simpler to visualize) Show to everybody that you master FE modelling ;-)

3
Using symmetries in FE models To use symmetries: Extract the smallest possible geometric region with « CAD » cut operations (can have multiple symmetries!!) Model the symmetry planes as imposed displacement / rotations: No displacement perpendicular to symm. plane No rotations (shell / beams only) along 2 axis in the symm. Plane Example: X-symmetry = symmetry wrt a plane of normal along X => U1 = UR2 = UR3 =0 ALWAYS USE SYMMETRIES WHENEVER POSSIBLE !!! (This will be check at the exams)

4
Symmetry: example U normal = 0 UR inplane = 0 Symmetry plane

5
Rigid body motions In statics, rigid body motions are responsible for singular stiffness matrices => no solution In statics, YOU MUST CONSTRAIN all 6 rigid body motions with suitable boundary conditions. If you don’t want to introduce additionnal stresses: use isostatic BC 90 % of the « the solver does not want to converge » problems come from rigid body motions !! => Always double check your boundary conditions

6
The 3-2-1 trick Is a simple trick to set isostatic boundary conditions: Select 3 points (forming a plane) On a 1st point: block 3 displacements => all translation are constrained On a 2 nd point, block 2 displacements to prevent 2 rotations On a 3rd point, block 1 displacement to block the last rotation.

7
Isostatic BC: Example of 3-2-1 rule U1=U2=U3=0 Loads F1 + F2 = 0 But system cannot be solved because of rigid body motions F1 F2 U2=U3=0 U2=0 Using the 3-2-1 trick, we introduce isostatic supports which do not overconstrain the system

8
Loading: standard type of loads Pressure: Units: force / area Is always NORMAL to the surface Positive towards the Inside Non uniform distribution with analytical fields function of coordinates Surface tractions: Units: force / area Can be freely oriented: define Gravity: Units: L/T^2 Defines the accelaration vector of gravity loads. You must define a Density in material properties Acceleration, Centrifugal loads …

9
Demo & tutorials Demo of Rod FEA Use partitions to create loading surfaces Use surface tractions Show rigid body motion = solver problem Use 3-2-1 rule to set isostatic BC Video tutorial BC-Tutorial: Use symmetries Use cylindrical coordinate systems to apply BC Apply non-uniform load distributions

Similar presentations

OK

FE analysis with bar elements E. Tarallo, G. Mastinu POLITECNICO DI MILANO, Dipartimento di Meccanica.

FE analysis with bar elements E. Tarallo, G. Mastinu POLITECNICO DI MILANO, Dipartimento di Meccanica.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google