Presentation is loading. Please wait.

Presentation is loading. Please wait.

5/2/20151 Parallel Computing DCS 860A Topics in Emerging Computer TechnologiesTopics in Emerging Computer Technologies DPS 2016, Fall 2014 Dr. Ron Frank.

Similar presentations


Presentation on theme: "5/2/20151 Parallel Computing DCS 860A Topics in Emerging Computer TechnologiesTopics in Emerging Computer Technologies DPS 2016, Fall 2014 Dr. Ron Frank."— Presentation transcript:

1 5/2/20151 Parallel Computing DCS 860A Topics in Emerging Computer TechnologiesTopics in Emerging Computer Technologies DPS 2016, Fall 2014 Dr. Ron Frank & Dr. Tappert By: Team 1 – DPS 2016 (Leigh Anne Clevenger, Kevin Khan, Mantie Reid, Javid Maghsoudi, Hugh Eng) Parallel Computing

2 5/2/20152 Presentation Summary Parallel Computing Presentation Summary : Parallel Computing Introduction Introduction: Single Thread, Multi-Thread, Serial Computing, etc. Concepts Concepts: Software, Memory Architecture, Programming Models Operating Systems Operating Systems: Cluster, Beowulf, SMP, AMP, Embedded, HPS, SSI Graphics Processing UnitGPU) Graphics Processing Unit ( GPU) Parallel Computing Future Outlook Parallel Computing Future Outlook A Quick Video A Quick Video : Massively Parallel Computation at NASA Goddard Closing Closing Parallel Computing

3 Single Thread: Processing of one command at a time. The smallest sequence of programmed instructions that can be managed independently by an operating system’s scheduler. Multithreading: they are a subset of a process, so that a process can have multiple threads and share resources. On a multiprocessor or multicore system the threads are concurrent with every processor/core executing a separate thread. Serial computing: is execution of one instruction at a time. This is the type of computing that we are all familiar with. Introduction 5/2/20153Parallel Computing

4 Introduction – cont. Parallel computing: Is the simultaneous use of multiple processors/cores to solve a problem. Problems are broken down into parts that can be solved concurrently. Each part is broken into a series of instructions. Each instruction can be executed on different processors/cores There is a need for a control mechanism. Almost all computers that are made today are capable of parallel processing from a hardware point of view. Most of the supercomputers today are really clusters of hardware. 5/2/20154Parallel Computing

5 Why Parallel Computing? We are at the limits of single CPU computing in terms of performance Parallel computing allows us to solve problems that don’t fit onto one CPU. (An example: the game consoles that are available, they would not be able to process both the instruction execution and the graphic display processing needed using one processor.) Our ability to model real situations require the problem to look at complex, interrelated events that are occurring at the same time. Where are we using Parallel Computing? - In science and engineering: Circuit designs, Molecular sciences, design of fighter planes, submarines, and other defense systems. - Industrial and commercial: Oil explorations, medical imaging, pharmaceutical design, - weather forecasting - Search for Extra Terrestrial Intelligence (SETI) - web search engines Introduction – cont. 5/2/20155Parallel Computing

6 Introduction – cont. Single Instruction Single Data (SISD) : The oldest type of computers executing only one instruction stream with one data in any one clock cycle. Single Instruction, Multiple Data (SIMD ): Single instruction each processing unit can work on a different data element (Processor Arrays and Vector pipelines and most graphic processing units) Multiple Instruction, Single Data (MISD ) : Each processing unit operates on the data independently using separate instruction streams (multiple cryptography algorithms for a single coded message) Multiple Instruction, Multiple Data (MIMD) : Every processor is executing a different instruction and every processor can be working on a different data stream. (most supercomputers, networked parallel computer clusters 5/2/20156Parallel Computing

7 Parallel Computing – Concepts & Software 5/2/20157 Differences: Parallel Computing & Serial Computing: Serial Computing: Software has been written for serial computation: A problem is broken into a discrete series of instructions Instructions are executed sequentially one after another Executed on a single processor & Only one instruction may execute at any moment in time Parallel Computing

8 Parallel Computing – Concepts & Software – Cont. 5/2/20158 Differences: Parallel Computing & Serial Computing: Parallel Computing: In the simplest sense, parallel computing is the simultaneous use of multiple compute resources to solve a computational problem: A problem is broken into discrete parts that can be solved concurrently Each part is further broken down to a series of instructions Instructions from each part execute simultaneously on different processors An overall control/coordination mechanism is employed Parallel Computing

9 Parallel Computing – Computers 5/2/20159 Parallel Computers : Virtually all stand-alone computers today are parallel from a hardware perspective: Multiple functional units (L1 cache, L2 cache, branch, prefetch, decode, floating- point, graphics processing (GPU), integer, etc.) Multiple execution units/cores Multiple hardware threads Parallel Computing

10 Parallel Computing – Concepts & Terminology 5/2/201510 von Neumann Architecture: Named after the Hungarian mathematician John von Neumann who first authored the general requirements for an electronic computer in his 1945 papers. Also known as "stored-program computer" - both program instructions and data are kept in electronic memory. Differs from earlier computers which were programmed through "hard wiring". Since then, virtually all computers have followed this basic design: Comprised of four main components: Memory Control Unit Arithmetic Logic Unit Input/Output Parallel Computing

11 Parallel Computing – Concepts & Terminology 5/2/201511 Flynn's Classical Taxonomy: There are different ways to classify parallel computers. Available Flynn's taxonomy distinguishes multi-processor computer architectures according to how they can be classified along the two independent dimensions of Instruction Stream and Data Stream. Each of these dimensions can have only one of two possible states: Single or Multiple. The matrix below defines the 4 possible classifications according to Flynn: An Example of MISD:A type of parallel computer Each processing unit operates on the data independently via separate instruction streams. Single Data: A single data stream is fed into multiple processing units. Parallel Computing

12 Parallel Computing – Memory Architectures 5/2/201512 There are multiple ways of having memory architecture: Non-Uniform Memory Access (NUMA): Uniform Memory Access (UMA): Distributed Memory Parallel Computing

13 Parallel Computing – Programming Models 5/2/201513 Shared Memory Model (without threads) In this programming model, tasks share a common address space, which they read and write to asynchronously. Threads Model This programming model is a type of shared memory programming. Distributed Memory / Message Passing Model Parallel Computing

14 5/2/201514 Parallel Computing – Programming Models Data Parallel Model The data parallel model demonstrates the following characteristics: Address space is treated globally Most of the parallel work focuses on performing operations on a data set. The data set is typically organized into a common structure, such as an array or cube. Parallel Computing

15 5/2/201515 Parallel Computing – An Example Array Processing: This example demonstrates calculations on 2-dimensional array elements, with the computation on each array element being independent from other array elements. The serial program calculates one element at a time in sequential order. Serial code could be of the form: Parallel Solution Arrays elements are distributed so that each processor owns a portion of an array (subarray). Independent calculation of array elements ensures there is no need for communication between tasks. Parallel Computing

16 Parallel Computing Operating Systems Cluster Each computer has a complete OS, and they can be combined using load-balancing servers for task parallelism, or perform computation for a single program Beowulf Cluster built of standard computers with a standard OS, controlled by server using Parallel Virtual Machine (PVM) and Message Passing Interface (MPI) Client nodes do only what they are directed to do Symmetric Multi-Processing (SMP) All processors are peers, sharing memory and I/O bus Asymmetric Multi-Processing (AMP) Operating system reserves processors for parallel use, cores may be specialized. Embedded Compilers, debuggers for parallel system on a chip (SoC) software designs (i.e. Intel System Studio) 5/2/201516Parallel Computing

17 Cluster Operating Systems High Performance Computing (HPC) Synchronization of clusters, task scheduler Example – Blue Gene from IBM Single-system Image (SSI) Multiple computers look like one Kerrighed global process management 5/2/201517Parallel Computing

18 Beowulf Clusters Low-cost solution for parallel computing platform Linux on desktops Scalable Construct with : Knoppix bootable CDs OpenMosix Open Source cluster application resources (OSCAR) Examples: Linux-Windows Hybrid HPC Cluster Scientific simulations High Density Computing: Green Destiny from Los Alamos National Labs 5/2/201518Parallel Computing

19 What is GPU? It is a processor optimized for 2D/3D graphics, video, visual computing, and display. It is highly parallel, highly multithreaded multiprocessor optimized for visual computing. It provide real-time visual interaction with computed objects via graphics images, and video. It serves as both a programmable graphics processor and a scalable parallel computing platform. Heterogeneous Systems: combine a GPU with a CPU 5/2/201519Parallel Computing

20 GPU Graphic Trends OpenGL – an open standard for 3D programming DirectX – a series of Microsoft multimedia programming interfaces New GPU are being developed every 12 to 18 months New idea of visual computing: combines graphics processing and parallel computing Heterogeneous System – CPU + GPU GPU evolves into scalable parallel processor vGPU renders graphics on a server GPU Computing: GPGPU and CUDA GPU unifies graphics and computing 5/2/201520Parallel Computing

21 GPU vs. CPU GPUs contain much larger number of dedicated ALUs then CPUs. GPUs also contain extensive support of Stream Processing paradigm. It is related to SIMD ( Single Instruction Multiple Data) processing. Each processing unit on GPU contains local memory that improves data manipulation and reduces fetch time. 5/2/201521Parallel Computing

22 GPU and CPU: The Differences GPU More transistors devoted to computation, instead of caching or flow control Suitable for data-intensive computation High arithmetic/memory operation ratio DRAM Cache ALU Control ALU DRAM CPU GPU 5/2/201522Parallel Computing

23 Future Apps in Concurrent World Exciting applications in mass computing market Molecular dynamics simulation Video and audio coding and manipulation 3D imaging and visualization Consumer game physics Virtual reality products Various granularities of parallelism exist, but… programming model must not hinder parallel implementation data delivery needs careful management Introducing domain-specific architecture CUDA for GPGPU 5/2/201523Parallel Computing

24 Parallel Computing Future Outlook Large parallel supercomputers, referred to as “exascale” computers, will have large data centers with hundreds of thousands of computers coordinating with distributed memory systems by the year 2020 According to the researchers, this type of computing will help conduct studies about genomics, new materials, simulations of fluid dynamics used for atmospheric analysis and weather forecasts, and even the human brain and its behavior. "Scientific field after field has changed as a result of the availability of prodigious amounts of computation, whether we're talking what you can get on your desk or what the big labs have available. The shockwave won't be fully understood for decades to come.“ Future capabilities such as photorealistic graphics, computational perception, and machine learning really heavily on highly parallel algorithms. Enabling these capabilities will advance a new generation of experiences that expand the scope and efficiency of what users can accomplish in their digital lifestyles and work place. These experiences include more natural, immersive, and increasingly multi-sensory interactions that offer multi-dimensional richness and context awareness. 5/2/201524

25 Massively Parallel Computation at NASA Goddard Massively Parallel refers to the use of a large number of processors (or separate computers) to perform a set of coordinated computations in parallel. A Quick Video: Massively Parallel Computation at NASA Goddard https://www.youtube.com/watch?v=s7aBDrho-hA 5/2/2015Parallel Computing25

26 5/2/201526 References : http://en.wikipedia.org/wiki/Computer_cluster#Parallel_programming http://electronicdesign.com/digital-ics/symmetric-multiprocessing-vs-asymmetric-processing http://goparallel.sourceforge.net/embedded-goes-parallel/ E. Betti, M. Cesati, R. Gioiosa, and F. Piermaria, “A global operating system for HPC clusters,” in IEEE International Conference on Cluster Computing and Workshops, 2009. CLUSTER ’09, 2009, pp. 1–10. M. K. Gobbert, “Configuration and performance of a Beowulf cluster for large-scale scientific simulations,” Computing in Science Engineering, vol. 7, no. 2, pp. 14–26, Mar. 2005. I. Castaos, I. Garrido, A. Garrido, and G. Sevillano, “Design and implementation of an easy-to-use automated system to build Beowulf parallel computing clusters,” in XXII International Symposium on Information, Communication and Automation Technologies, 2009. ICAT 2009, 2009, pp. 1–6. M. S. Warren, E. H. Weigle, and W. Feng, “High-Density Computing: A 240-Processor Beowulf in One Cubic Meter,” in Supercomputing, ACM/IEEE 2002 Conference, 2002, pp. 61–61. S. Liang, V. Holmes, and I. Kureshi, “Hybrid Computer Cluster with High Flexibility,” in 2012 IEEE International Conference on Cluster Computing Workshops (CLUSTER WORKSHOPS), 2012, pp. 128–135. K. V. Sandhya and G. Raju, “Single System Image clustering using Kerrighed,” in 2011 Third International Conference on Advanced Computing (ICoAC), 2011, pp. 260–264. W. Luo, A. Xie, and W. Ruan, “The Construction and Test for a Small Beowulf Parallel Computing System,” in 2010 Third International Symposium on Intelligent Information Technology and Security Informatics (IITSI), 2010, pp. 767–770. Introduction to Parallel Programming concepts Research Computing and Cyberinfrastructure http://rcc.its.psu.edu/education/workshops/pages/parwork/IntroductiontoParallelProgrammingConcepts.pdf http://searchsdn.techtarget.com/search/query?q=gpu http://web.eecs.umich.edu/~qstout/parallel.html Barney, Blaise. "Introduction to Parallel Computing." Introduction to Parallel Computing. Lawrence Livermore National Laboratory, 14 July 2014. Web. 24 Sept. 2014.. “Multithreaded Programming Guide”, SunSoft, Sun Microsystems, Inc., 1994, Parallel Computing


Download ppt "5/2/20151 Parallel Computing DCS 860A Topics in Emerging Computer TechnologiesTopics in Emerging Computer Technologies DPS 2016, Fall 2014 Dr. Ron Frank."

Similar presentations


Ads by Google