Presentation is loading. Please wait.

Presentation is loading. Please wait.

Scientific need, design and construction of a muon telescope for the Pierre Auger Observatory R. Alfaro Molina 3, M. A. Diózcora Vargas Trevino 5, J. C.

Similar presentations


Presentation on theme: "Scientific need, design and construction of a muon telescope for the Pierre Auger Observatory R. Alfaro Molina 3, M. A. Diózcora Vargas Trevino 5, J. C."— Presentation transcript:

1 Scientific need, design and construction of a muon telescope for the Pierre Auger Observatory R. Alfaro Molina 3, M. A. Diózcora Vargas Trevino 5, J. C. D'Olivo 1, H. Márquez-Falcón 6, G. A. Medina- Tanco 1, E. Nahmad-Achar 1, G. Paic 1, M. E. Patino Salazar 1, H. Salazar Ibarguen 4, Federico Sanchez 1, A. Sandoval 3, J. F. Valdes Galicia 2, S. Vergara Limon 5, L. M. Villasenor 6, A. Redondo Gonzalez 7, N. Pacheco G ó mez 7, L. del Peral 7, X. Bertou 8, I. Allekotte 8 (1) Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México, D.F., C.P (2) Instituto de Geofísica, Universidad Nacional Autónoma de México, México, D.F., C.P (3) Instituto de Física, Universidad Nacional Autónoma de México, México, D.F., C.P (4) Instituto de Física, Universidad de Puebla, México, Puebla, C.P (5) Facultad de Ciencias de la Electrónica, Grupo de Robótica, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur C. U., Edif. 182, C.P , Puebla, México. (6) Universidad Michoacana de San Nicolás Hidalgo Morelia, Mich., C.P , México. (7) Universidad de Alcal á, Espa ñ a (8) Inst. Balseiro, Bariloche, Argentina Scientific need, design and construction of a muon telescope for the Pierre Auger Observatory R. Alfaro Molina 3, M. A. Diózcora Vargas Trevino 5, J. C. D'Olivo 1, H. Márquez-Falcón 6, G. A. Medina- Tanco 1, E. Nahmad-Achar 1, G. Paic 1, M. E. Patino Salazar 1, H. Salazar Ibarguen 4, Federico Sanchez 1, A. Sandoval 3, J. F. Valdes Galicia 2, S. Vergara Limon 5, L. M. Villasenor 6, A. Redondo Gonzalez 7, N. Pacheco G ó mez 7, L. del Peral 7, X. Bertou 8, I. Allekotte 8 (1) Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México, D.F., C.P (2) Instituto de Geofísica, Universidad Nacional Autónoma de México, México, D.F., C.P (3) Instituto de Física, Universidad Nacional Autónoma de México, México, D.F., C.P (4) Instituto de Física, Universidad de Puebla, México, Puebla, C.P (5) Facultad de Ciencias de la Electrónica, Grupo de Robótica, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur C. U., Edif. 182, C.P , Puebla, México. (6) Universidad Michoacana de San Nicolás Hidalgo Morelia, Mich., C.P , México. (7) Universidad de Alcal á, Espa ñ a (8) Inst. Balseiro, Bariloche, Argentina

2 AMIGA & HEAT BASELINE Auger Enhanced spectral region to be covered G. Medina-Tanco

3 Auger baseline design

4 Auger enhancements AMIGA 2 SD graded infills Buried muon counter scintillators HEAT 3 higher elevation FD telescopes Lower the full efficiency threshold of Auger down to 0.1 EeV Improve primary discrimination in the 2 nd Knee & ankle region G. Medina-Tanco

5 HEAT + AMIGA layout & Auger

6 AMIGA layout Graded infill SD array 1. Full E > eV 5.9 km2 – 24 tanks – 433 m 2. Full E > 3.5x10 17 eV 23.5 km2 – 42 tanks – 750 m + buried muon scintillators: 30m 2 per tank depth: ~ 2-3m Mode: counters G. Medina-Tanco

7 AMIGA SD-station [ (  +e ± ) +  ] & Scintillator [  ] 2-3m Muon counter Regular Auger water Cerenkov tankEASground G. Medina-Tanco

8 Scintillator strips are extruded polystyrene doped with fluors: PPO (1%) and POPOP (0.03%) Co-extruded TiO 2 reflective coating WLS fibers: Kuraray Y ppm 1.2 mm diameter Fiber is glued into groove and covered with reflective foil AMIGA: muon counters – scintillator strips

9 Scintillator area at each station: 30 m 2 Multianode PMTs 64 pixels M64 (Hamamatsu) AMIGA: muon counters – scintillator strips G. Medina-Tanco

10 Geant4 – Parent: muon - E  = 5 GeV  ~ 1.8 g/cm 3 ~ 3 m x y z  e-e- e-e- e-e- e-e- F. Sanchez & GMT few mm

11 x y Geant4 – Parent: photon - E  = 5 GeV x y z ~ m  ~ 1.8 g/cm 3 F. Sanchez & GMT

12 Geant4 –  /e +/- Longitudinal profile 0.5 GeV1.0 GeV 5.0 GeV 10.0 GeV 3 m F. Sanchez & GMT 3 m 50 cm

13 10 18 eV Region of interest for the shielded muon counters log E [GeV] E dN/dE [m -2 ] EeV protons: distribution 200 m from core BATATA This is where BATATA enters into the picture G. Medina-Tanco

14 Detector layout

15 BATATA: punch-through characterization system     y x e    2 m ~30 cm ~2.0 m 2 m PMT + electronics x y  G. Medina-Tanco

16 t 1 =0t2t2 t3t3 l l l |n 3 |=ct 3 |n 2 |=ct 2 n Surface trigger array G. Medina-Tanco

17 WHOLE BATATA ARRAY l ll s1s1 s3s3 s2s2  SD G. Medina-Tanco

18 End-to-end simulation

19 End-to-end BATATA simulations EAS Core Auger tank 200m 10m xy BATATA planes AIRES Geant4 10m F. Sanchez & GMT (2007)

20 Trigger 3 tanks End-to-end BATATA simulations: Temporal & spatial unthinnings are applied F. Sanchez & GMT (2007)

21 Kuraray Preliminar simulation Kuraray Preliminar simulation End-to-end simulations Scint.Strip + optical fiber characterization & calibration End-to-end simulations Scint.Strip + optical fiber characterization & calibration Actual measurements 180 cm 100 cm 20 cm In order to implement a realistic trigger threshold in the BATATA simulations, we are calibrating at present energy deposit vs signal (mV) via simulated optical photons at the PMT window.

22 End-to-end BATATA simulations Trigger on energy deposit is applied F. Sanchez & GMT (2007)

23 AMIGA application of BATATA simulation machine Side view Top view Tilted view Zoomed side view e    e   G. Medina-Tanco

24 Attenuation length

25 Muon surface efficiency & time of flight difference to PMT

26 Electromagnetic particles

27 Data analysis Track discrimination: End-to-end simulations NN analysis Multiparametric analysis E. Nahmad & F. Sanchez & GMT (2007)

28 Front end electronics for one channel with a differential output LVDS AD8009 OUT MAX9201 CONECTORCONECTOR DB0 DB7 WR A0 A1 REF PMT H7564B OUT A DAC-TLC7226C OUT B OUT C OUT D IN 1A G G VDD CONECTORDIFCONECTORDIF SN55LVDS31 1Y 1Z G=10 Amplifierdiscriminator Setup of the discriminator level G. Medina-Tanco S. Vergara, E. Patiño, M. A. D. Vargas Trevino & G. Paic

29 Electronics: front-end 64 channels board S. Vergara, E. Patiño, M. A. D. Vargas Trevino & G. Paic

30 DAQ: Huberto Salazar (BUAP) Luis Villaseñor (UMSNH)

31 Other applications Punch-through characterization Measurement of the angular distribution functions at ground for , e ±,  Check temporal (& spatial ?) un-thinning Low energy directional  background: sky maps  Astrophysics  Space weather  CR-climate connections G. Medina-Tanco

32 Casing – another idea y = 2 m x = 2 m ~0.4 m ?~0.15 m ? inspection lids Silicon filing ? Simplest. But: Too large? Too heavy?

33 Casing requirements 1.Buried life expectance: 5 yr 2.Water-tight 3.Corrosion free 4.Salt resistant 5.Maximum working temperature: 50 o C (at the electronic box) 6.Can be opened and re-sealed in a non-destructive way (desirably) under field conditions. 7.Sturdy enough as to survive shipping, handling and burying. 8.Material: TBD 9.Color: white or aluminum -- must be reflective 10.Dimensions: a.footprint 2m x 2.5 m ; b.Thickness: i.scintillator section: ~1.2 cm (interior) ii.Optical fiber bending section: 1.2 cm (interior) iii.Electronic housing section: ~20 cm (internal) c.Lid thickness: < mm (?) -- x & y planes must be as much in physical contact as possible. d.Base thickness: TBD 11.Water-tight openings for circular and flat cables. Location must take into account optimal flat cable bending. 12.Support for cookie, PMT and (vertical) electronic board (must be rigid at T~50 o C) 13.Optical fiber bending section must not collapse under a pressure of at least 600 g/cm 2. A filling may be used. Potting (rigid or fluid) may not be desirable). With fungicide. 14.Longitudinal displacement of scintillator bars must be blocked. 15.Electronics / optical coupling inspection lid to be used under field conditions (w/o tightness compromise). 16.Handles for crane 17.Ensure the perpendicularity of x & y 18.Ensure that different planes are aligned among themselves Gustavo Medina-Tanco

34 BATATA: current status Design - General design: FROZEN (except exact depths of planes 1 & 2) - Operating strategy: FROZEN End-to-end simulations: 90% - Ongoing: calibration w/measurements Electronics: 50% - Ongoing: frontend printing/assembling & FPGA Scintillator - 32m 2 from Fermilab – built & delivered in TX optical fiber - FROZEN – Bicron PMT - FROZEN – 64 pix PMT Casing - started: CCADET - ICN - IG (UNAM) Solar power supply - Univ. de Alcal á control & processing software - Ongoing: ICN-UNAM / Univ. de Alcalá Data analysis software: 70% - 2 startegies: multiparam. analysis & N-Networks SD array: - Installation in Nov/2007: IB/BUAP/UMSNH/UNAM Design - General design: FROZEN (except exact depths of planes 1 & 2) - Operating strategy: FROZEN End-to-end simulations: 90% - Ongoing: calibration w/measurements Electronics: 50% - Ongoing: frontend printing/assembling & FPGA Scintillator - 32m 2 from Fermilab – built & delivered in TX optical fiber - FROZEN – Bicron PMT - FROZEN – 64 pix PMT Casing - started: CCADET - ICN - IG (UNAM) Solar power supply - Univ. de Alcal á control & processing software - Ongoing: ICN-UNAM / Univ. de Alcalá Data analysis software: 70% - 2 startegies: multiparam. analysis & N-Networks SD array: - Installation in Nov/2007: IB/BUAP/UMSNH/UNAM 80% G. Medina-Tanco

35 Tentative Chronogram Assembly: November 2007 Delivery: February 2007 Installation:March 2008 Operation starts:April 2008 Stable operation:May 2008 Tentative Chronogram Assembly: November 2007 Delivery: February 2007 Installation:March 2008 Operation starts:April 2008 Stable operation:May 2008 BATATA: (dynamical) cronogram G. Medina-Tanco


Download ppt "Scientific need, design and construction of a muon telescope for the Pierre Auger Observatory R. Alfaro Molina 3, M. A. Diózcora Vargas Trevino 5, J. C."

Similar presentations


Ads by Google