Download presentation

Presentation is loading. Please wait.

Published byRaven Pickerel Modified over 2 years ago

1
Some interesting papers UKCI '02: Aniko Ekart: GAs for discrete sequence prediction Given a long, long sequence of integers, eg 1,2,0,2,1,1,3,1,2,0,2,0,1,2,1,0,3,3,...,2,0,3 what comes next? The idea: work out the probability that it is j, using statistics from all subsequences of length i

2
Discrete sequence prediction Then define... use a GA to find the suitable weights. This weird idea won the Binary Time Series contest at CEC '99

3
Slime mold simulation UKCI '02: Joe Rothermich and JFM: Studying the emergence of multicellularity with Cartesian GP in ALife ● Lots of simulated cells, each controlled by an evolved controller ● They can move influenced by chemical gradients ● They can release chemicals ● They can divide – a cell dies when it divides, and produces two mutated children ● They have energy, there are energy sources

4
Cartesian GP: repesentation Each chromosome holds N nodes; a node describes a function block and is described by four integers: 1: the function 2: external input 3: link to a node 4: link to a node 0 = do nothing 1 = move towards (2) 2 = move away from (2) 3 = if (2) present do (3), else (4) 4 = if (2) present do (4), else (3) 5 = if energy > UPPER do (3) else (4) 6 = if energy < LOWER do (3) else (4) 7 = do (3) then divide 8 = do (3) then release chemical The functions:

5
Cartesian GP for slime molds Example: 0000 7100 1010 1012 3100 3024 If chemical 1 is present then do node 0 (= do nothing) else do node 0 (= do nothing) 0 1 2345 Do nothing Move towards chemical 0

6
Slime mold simulations Some results: ● Some nice groupings ● Often: “divide only when near energy source” ● Demo source in /home/shared/peter/software in the archive file cells.tar.gz

7
Robot body plans: what's best? SAB-7: Josh Bongard, Rolf Pfeifer: A method for isolating morphological effects on evolved behaviour Idea: 10 different body plans, each with 4 touch sensors, 4 angle sensors, eight one-degree-of- freedom motors. Use a GA to configure a recurrent net: how far can the robot go in 500 time steps?

8
Robot body plans Some bodies: Vortex physics engine from www.cm-labs.com - commercial product - handles graphics, collisions, gravity, friction etc

9
The neural net controller Motors Touch sensors Angle sensors Recurrent 3-node hidden layer Chromosome: 68 weights (including bias weights), each in -1... +1

10
Evolving NN-based controllers ● Population size 300, run for 200 generations ● Strong elitism: copy the top 150 into new generation, and then... ●... use tournament selection of size 3 to choose parents from these 150, to create another 76 ●... and finally generate the last 74 by mutating some of the bottom 150 of old population

11
Robot morphology tests ● 10 GA runs per body ● Fitness = how far a chosen body part has moved after 500 time-steps of the simulation ● Results: ● Rhythmic gait readily emerges... (hmm) ● Too many or too few legs creates problems

12
Evolution of active vision SAB-7: Davide Marocco and Dario Floreano: Active vision and feature selection in evolutionary behavioural systems The ideas: ● First: neural net controls size and motion of a simple `retina' (3x3 grid) as it looks for a black square or triangle somewhere in a white box ● Second: NN controls pan-and-tilt camera on robot ● Third: same idea applied to a simulated car world

13
Simple active vision ● `Retina' = 3x3 grid of variable size ● Can also be moved by giving distance and direction ● Returns either average value of 9 cells, or value of top-left cell ● System outputs one of “triangle” or “square”

14
The neural net used 1 2 345 6 Outputs: 1: it's a triangle 2: it's a square 3: average, or top-left 4: retina size (as %) 5: distance to move (as %) 6: direction to move Boundary bit Retina The net outputs are fully recurrent, that is, each is connected to all the others

15
The GA used ● Trained on 20 images, each with a triangle or square of random size in random position ● NN gets 50 time-steps – one time-step per move ● Fitness = proportion of correct classifications over the time-steps (NB: cannot say “don't know”, so never perfect) ● Typical evolved behaviour: move toward the shape and scale down, then oscillate vertically looking for a straight edge (if so, square, else..)

16
Applying it to a Koala robot ● Pan-tilt camera with 240x240 grayscale image ● Infrared sensors on robot as well ● NN controls robot, camera pan and tilt ● Aim: the robot should travel as far as it can without hitting anything ● Evolved on the robot itself: each generation took 1.5 hours, needed around 12 generations in all

17
Applying it to steer a simulated car ● Car World: available as source, runs on Linux and Windows: carworld.sourceforge.net ● Artificial 3x3 retina evolved to track road edge ● Motion of retina controls vehicle steering

18
Ant colony: some analysis GECCO-2002: Daniel Merkle, Martin Middendorf: Studies on the dynamics of ant colony optimisation algorithms Idea: permutation problems: n cities, costs Cij >0 to go from i to j, find min-cost tour. Analysed mathematically, results compared to simulations Outcome: ACO behaviour depends in a complex way on the parameters of pheromone updating Performance can even decline as ACO runs.

19
Container yard management GECCO-02: Ping Chen, Zhaohui Fu, Andrew Lim: Using GAs to solve the yard allocation problem ● Port of Singapore: > 100,000 shiploads per year ● Want to store containers: a single row may hold containers from different shipments, and parts of a shipment may arrive/leave at various times ● Want to keep each shipment together, without needing to move containers to make space for other shipments ● An NP-hard problem...

20
Yard allocation: invalid example ● Picture shows one row, over times 1-16 ●...shows some invalid placements: must not have containers added to one end of a block and removed from the other end at the same time

21
Yard allocation: valid example ● A valid placement ● Needs length 13 – is this optimal? ● Turn the problem into a graph problem...

22
Yard allocation in graph form means “is above” Find a labelling of the graph such that Li < Lj iff i is above j

23
Yard allocation ● Given a labelling, it describes an ordering in which to “drop” the blocks from above – in effect, a game of Tetris! ●... therefore, it's a permutation problem. ● Fitness = max length of yard used (minimise) ● GA uses one-point crossover with repair, PMX and cycle crossovers; insertion, inversion and swap mutations ● Popsize 100; generate 200, take top 100.

24
Yard allocation ● GA compared to simulated annealing, tabu search with short-term memory, tab-search with long- term memory ● Tested on problems with 117-236 separate shipments ● GA outperformed the other methods in all cases, by a healthy margin ● Problems online at www.comp.nus.edu.sg/~fuzh/YAP/

25
...and so... Lots of unusual project possibilities...

Similar presentations

OK

Lecture 8: 24/5/1435 Genetic Algorithms Lecturer/ Kawther Abas 363CS – Artificial Intelligence.

Lecture 8: 24/5/1435 Genetic Algorithms Lecturer/ Kawther Abas 363CS – Artificial Intelligence.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Dot matrix display ppt online Ppt on hotel industry in india Ppt on blood stain pattern analysis lab Ppt on autonomous car cross Ppt on 1200 kv ac transmission line Ppt on grasslands of the world Ppt on old testament history Ppt on conservation of momentum worksheet Ppt on management of natural resources Ppt on earthquake resistant design of structures