Presentation is loading. Please wait.

Presentation is loading. Please wait.

DNA: the Molecule of Heredity

Similar presentations

Presentation on theme: "DNA: the Molecule of Heredity"— Presentation transcript:

1 DNA: the Molecule of Heredity

2 What is DNA? Deoxyribonucleic acid DNA determines an organism’s traits
DNA achieves control by producing proteins Remember: proteins give us structural building material and allow function (enzymes) DNA is the information for life

3 Time Line – Early History of Genetics
Key Players 1840’s Mendel Early 1900’s T.H. Morgan Griffith Avery Hersey and Chase Chargaff Early 1950’s Franklin and Wilkins Early 1950’s Pauling Watson and Crick Place these names and dates on your timeline under “Scientists”

4 DNA is the genetic material
Early 1900’s, the identification of the molecules of inheritance loomed as a major challenge to biologists T. H. Morgan’s group showed that genes are located on chromosomes, the two components of chromosomes—DNA and protein—became candidates for the genetic material

5 Early History of Genetics
The discovery of the genetic role of DNA began with research by Frederick Griffith in 1928 He worked with two strains of a bacterium, one pathogenic and one harmless. He did transformation experiments Basically he found that harmless bacteria became deadly when they took in DNA from dead pathogenic bacteria

6 Fig. 16-2 Mixture of heat-killed S cells and living R cells EXPERIMENT Living S cells (control) Living R cells (control) Heat-killed S cells (control) Avery He separated the components of the bacteria and found only the DNA extract caused mice to die RESULTS Figure 16.2 Can a genetic trait be transferred between different bacterial strains? Mouse dies Mouse healthy Mouse healthy Mouse dies Living S cells

7 Evidence That Viral DNA Can Program Cells
More evidence for DNA as the genetic material came from studies of viruses that infect bacteria Such viruses, called bacteriophages (or phages), are widely used in molecular genetics research

8 Hersey and Chase Fig. 16-4-3 EXPERIMENT Empty protein shell
Radioactivity (phage protein) in liquid Radioactive protein Phage Bacterial cell Batch 1: radioactive sulfur (35S) DNA Phage DNA Centrifuge Radioactive DNA Pellet (bacterial cells and contents) Figure 16.4 Is protein or DNA the genetic material of phage T2? Batch 2: radioactive phosphorus (32P) Centrifuge Radioactivity (phage DNA) in pellet Pellet

9 Next Steps… What is DNA made of?
It was known that DNA is a polymer of nucleotides, each consisting of a nitrogenous base, a sugar, and a phosphate group In 1950, Erwin Chargaff reported that DNA composition varies from one species to the next, however that the nitrogen based are found in predictable ratios: A = T and C = G

10 Finding the Structure of DNA
After most biologists became convinced that DNA was the genetic material, the challenge was to determine how its structure accounts for its role Maurice Wilkins and Rosalind Franklin were using a technique called X-ray crystallography to study molecular structure Franklin produced a picture of the DNA molecule using this technique

11 The Discovery of DNA Watson and Crick – 1953
Double Helix – long twisted zipper Segment with James Watson

12 Structure of DNA DNA is a long molecule Composed of nucleotides
Simple sugar – deoxyribose Phosphate group Nitrogen base – Adenine - Guanine - Cytosine - Thymine Structure of DNA

13 DNA Structure Cont. Animation on how DNA is packaged into the nucleus

14 A pairs with T C pairs with G S – A ..…T – S | | P P | |
| | S – G ..…C – S | | P P | | S – C ..…G – S A pairs with T C pairs with G Weak Hydrogen Bond

15 DNA Instructions for life
The sequence of nitrogen bases forms the genetic instructions for an organism A-T-T-G-A-C is different than T-T-C-A-A-G They code for different proteins and therefore structure and function of an organism

16 How can we use DNA? Nucleotide sequences can be used to determine evolutionary relationships Organisms that are closely related have similar DNA Ex. Gorilla and Chimp – very similar Gorilla and Rose Bush – very different It can be used to determine if two people are related DNA can be used to compare DNA from a crime scene to DNA from a suspect

17 Complementary Strands
If one side of the DNA molecule consisted of the following nucleotide bases, what would the other side be? ATC CTG GAT TAT GAC CAT ATG

18 DNA Replication

19 DNA Replication You have learned that cells divide through the process of mitosis and meiosis In order to do this, each cell has to make a copy of its DNA DNA is copied through the process of DNA Replication What might happen DNA replication did not occur prior to cell division?

20 How DNA Replicates Remember: DNA is composed of two strands
A pairs with T C pairs with G So if you know the order of bases on one side, you know the order on the other side (the complementary strand) During replication, each strand serves as a pattern

21 *What has to happen first in to make a copy of the DNA?
Fig A T C G T A A T G C (a) Parent molecule Figure 16.9 A model for DNA replication: the basic concept *What has to happen first in to make a copy of the DNA?

22 (b) Separation of strands
Fig A T A T C G C G T A T A A T A T G C G C (a) Parent molecule (b) Separation of strands Figure 16.9 A model for DNA replication: the basic concept What type of molecule might help the two sides of the DNA molecule separate?

23 (b) Separation of strands
Fig A T A T A T A T C G C G C G C G T A T A T A T A A T A T A T A T G C G C G C G C (a) Parent molecule (b) Separation of strands (c) “Daughter” DNA molecules, each consisting of one parental strand and one new strand Figure 16.9 A model for DNA replication: the basic concept What types of molecules might be used to add nucleotides and bind the sides together?

24 Enzymes involved in DNA Replication
Helicase – unwinds the DNA strand to begin replication (it’s like unzipping a zipper) DNA Polymerase – adds nucleotides, one at a time to the open DNA strand (in humans up to 50 nucleotides per second) Ligase - joins the sugar-phosphate backbones of the newly formed strand. (it’s like gluing the sides together)

25 Steps of DNA Replication
Step 1 – An enzyme breaks the H+ bonds between the nitrogen bases that holds the two strands together (un-zipping the molecule) Step 2 – Free floating nucleotides in the cell bond to the complementary bases on each of the original strands Step 3 – An enzyme secures the two strands together, forming two new chains

26 DNA Replication Cont. DNA replication results in the formation of two identical strands from the one original DNA molecule. What do you think the word “semiconservative” means?

27 DNA Replication is Semiconservative
Watson and Crick’s semiconservative model of replication predicts that when a double helix replicates, each daughter molecule will have one old strand (derived or “conserved” from the parent molecule) and one newly made strand

28 DNA replication animation
HHMI animation

29 Compare the two new strands of DNA. Are they the same or different? Why?
G C G C G C G T A T A T A T A A T A T A T A T G C G C G C G C (a) Parent molecule (b) Separation of strands (c) “Daughter” DNA molecules, each consisting of one parental strand and one new strand Figure 16.9 A model for DNA replication: the basic concept

30 From DNA to Protein

31 From DNA to Protein The sequence of nucleotides in DNA contains information that produces proteins Proteins Structures Enzymes By controlling protein production, DNA controls cells

32 RNA Different from DNA in 3 ways RNA – single strand
Sugar in RNA is ribose (DNA = deoxyribose) RNA has uricil (U) instead of thymine

33 The cell works like a factory
DNA provides “workers” with instructions for making proteins “workers: bring over the parts (amino acids) to the assembly line Workers = RNA

34 3 Types of RNA Messenger RNA (mRNA)
brings the info from the nucleus to the factory floor (cytoplasm) Ribosomal RNA (rRNA) – ribosomes are made of rRNA Clamp onto mRNA and use its info to assemble amino acids Transfer RNA (tRNA) – “supplier” Transports amino acids to the ribosomes where they are assembled into proteins

35 RNA Transcription Read steps in figure 11.6 (pg 296)
Explain how it is different from DNA replication Animation of Transcription HHMI animation

36 The role of tRNA For proteins to be built, the 20 different amino acids dissolved in the cytoplasm must be brought to the ribosomes This is the role of tRNA

37 tRNA Composed of about 80 nucleotides
Each tRNA only recognizes only one amino acid The amino acid bonds to the tRNA Located on the base of the tRNA molecule are three nitrogen bases, called an anticodon, that pair up with an mRNA codon during translation

38 tRNA Basically, the tRNA molecule transfers the information for making proteins to the correct codon on the mRNA. If the mRNA has the codon for that particular amino acid, the tRNA binds, if it does not, the tRNA doesn’t bind and the amino acid that the tRNA is carrying is not made.

39 Amino Acids to Proteins
Proteins are made in the Ribosomes Proteins are made of Amino Acids As multiple tRNA molecules attach to the mRNA, an enzyme joins the two amino acids by forming a peptide bond.

40 Translation of DNA to Protein
Translation Animation HHMI animation

41 The Genetic Code A code is needed to convert the language of mRNA into the language of proteins  amino acids There are 20 different amino acid mRNA only has 4 bases (AUCG) Ala: Alanine  Cys: Cysteine  Asp: Aspartic acid  Glu: Glutamic acid Phe: Phenylalanine  Gly: Glycine His: Histidine  Ile: Isoleucine  Lys: Lysine Leu: Leucine  Met: Methionine Asn: Asparagine Pro: Proline Gln: Glutamine Arg: Arginine Ser: Serine Thr: Threonine Val: Valine Trp: Tryptophane Tyr: Tyrosisne

42 The Genetic Code Cont. Scientist found that a group of 3 nucleotides codes for 1 amino acid Each set of 3 nucleotides that code for an amino acid is called a codon

43 The Genetic Code Cont. Some codons don’t code for amino acids, they are instructions for assembling proteins Stop codon = UAA Start codon = AUG

44 Genetic Code Cont. All organisms use the same genetic code for assembling proteins UAC = tyrosine in humans, birch trees, and bacteria

45 Genetic Code Cont. Try these:

46 Critical Thinking Questions
How specific are the tRNA molecules? How does energy play a role in all this hustle and bustle? How does translation begin and end? What happens to the mRNA strands?

47 Compare and contrast Transcription and Translation
Where? What is used as a template? What is used to synthesize the new strand? What is the new strand made of?

48 Compare and Contrast Replication and Protein Synthesis
Where? When? Purpose? Starting point? What enzyme is used to synthesize the new strand? Associated proteins? Nucleotides? Finishing Processes? Where does the finished “product” go?

49 Read the Help Wanted ad below
Read the Help Wanted ad below. Based on your notes, tell me “who” is qualified to fill each position. Your choices are DNA, tRNA, and mRNA. Help Wanted! Positions Available in the genetics industry. Hundreds of entry-level openings for tireless workers. No previous experience necessary. Must be able to transcribe code in a nuclear environment. The ability to work in close association with ribosomes is a must. Accuracy and Speed vital for this job in the field of translation. Applicants must demonstrate skills in transporting and positioning amino acids. Salary commensurate with experience. Executive Position available. Must be able to maintain genetic continuity through replication and control cellular activity by regulation of enzyme production. Limited number of openings. All benefits. Supervisor of production of proteins—all shifts. Must be able to follow exact directions from double-stranded template. Travel from nucleus to the cytoplasm is additional job benefit.

50 Central Dogma of Genetics

51 Genetic Changes

52 Mutations: Changes in DNA
Mutation – any change in the DNA sequence that also changes the protein it codes for Mutations can happen in reproductive cells and in body cells (cancer)

53 Point Mutation A change in a single base pair in DNA
Look at this simple analogy THE DOG BIT THE CAT THE DOG BIT THE CAR

54 Frameshift Mutation When a single base is added or deleted from a DNA strand It shifts the reading of the codons by one base

55 More about Mutations Look at table 12.3 on pg Gather some information about the different types of mutations. Look at the examples of the diseases associated with each type of mutation Read pg 349. -What are the results of mutations to body cells? -What are the results of mutations to sex cells? -Why is a mutation in a sex cell considered potentially more harmful than one in a body cell?

56 Chromosomal Mutations
Changes that occur at the level of the chromosomes Occurs when parts are broken off and lost during mitosis or meiosis Few chromosome mutations are passed on to the next generation because the zygote usually dies or is sterile Video Clip

Download ppt "DNA: the Molecule of Heredity"

Similar presentations

Ads by Google