Download presentation

Presentation is loading. Please wait.

Published byTessa Chivers Modified over 2 years ago

1
CLIC drive beam accelerating (DBA) structure Rolf Wegner

2
14-Oct-2009CLIC DBA Rolf Wegner2 Outline CLIC drive beam complex, 3 GHz DBA structure design of 1 GHz DBA structure optimisations for efficiency and filling time damping and detuning summary

3
14-Oct-2009CLIC DBA Rolf Wegner3 CLIC RF power source f acc = 0.99952 GHz I pulse = 4.2 A V acc = 2.37 GV P peak,RF ≈ 12 GW P avg,RF ≈ 90 MW

4
14-Oct-2009CLIC DBA Rolf Wegner4 3 GHz DBA structure f acc = 3 GHz P in = 33 MW n cell = 33 Length= 1.22 m Ø outside = 17.4 cm weight ≈ 200 kg 17.4 cm

5
14-Oct-2009CLIC DBA Rolf Wegner5 3 GHz DBA structure SICA = Slotted Iris – Constant Aperture

6
14-Oct-2009CLIC DBA Rolf Wegner6 1 GHz DBA structure SICA principle but no direct scaling possible 3 GHz: Ø= 17.5 cm, L= 1.2 m, weight= 200 kg 1 GHz: Ø= 52.5 cm, L= 1.2 m, weight= 1800 kg klystron P RF ~ 10 to 15 MW (optimising klystron cost per MW and per operating hour and modulator cost) noise, phase error reduction if t fill = 240…250 ns (combination scheme => multiplication of phase noise, t DL ≈ 245 ns, t CR I ≈ 2*245 ns, t CR II ≈ 6*245 ns)

7
14-Oct-2009CLIC DBA Rolf Wegner7 basic cell geometry RbRb gap b LbLb gap a LaLa R BP RaRa 110 60 11 18R 6 R 9 99.979 3 basic cells typical dimensions

8
14-Oct-2009CLIC DBA Rolf Wegner8 simulations of basic cells variations: R BP gap vgr/c tuning R a => f 0 = 0.99952 GHz vgr/c range: min ~ 0.4% to 0.5%

9
14-Oct-2009CLIC DBA Rolf Wegner9 design of TWS gap n R BP E 0 T V acc Ncells P out P in PbPb PbPb constant aperture η= ΔP b /P in t fill mode spectrum

10
14-Oct-2009CLIC DBA Rolf Wegner10 design of TWS example: P in = 10 MW I b = 4.21 A N cells = 10 R BP = 39 mm vgr/c (gap) const η= 97.7% t filling = 239.9 ns vgr/c lin. distribution η= 98.0% t filling = 252.7 ns

11
14-Oct-2009CLIC DBA Rolf Wegner11 design of TWS example: P in = 10 MW I b = 4.21 A N cells = 10 R BP = 39 mm vgr/c const η= 97.7% t filling = 239.9 ns vgr/c lin. distribution η= 98.0% t filling = 252.7 ns

12
14-Oct-2009CLIC DBA Rolf Wegner12 design of TWS example: P in = 10 MW I b = 4.21 A N cells = 10 R BP = 39 mm vgr/c const η= 97.7% t filling = 239.9 ns vgr/c lin. distribution η= 98.0% t filling = 252.7 ns

13
14-Oct-2009CLIC DBA Rolf Wegner13 optimisations P in = 10 MW I b = 4.21 A R BP = 39 mm Ncells= 10 vgr/c lin. distribution vgr/c= [2.2% to 0.86%] vgr/c= [1.7% to 0.86%] vgr/c= [1.7% to 1.28%]

14
14-Oct-2009CLIC DBA Rolf Wegner14 optimisations - efficiency P in = 10 MW I b = 4.21 A R BP = 39 mm Ncells= 4.. 16 vgr/c lin. distribution optimised for efficiency efficiency

15
14-Oct-2009CLIC DBA Rolf Wegner15 noise damping => D, t fill combined optimisations DBA structure tasks: acceleration => η RF Drive Beam Accelerator Delay Loop 2 gap creation, pulse compression & frequency multiplication 1 st Combiner Ring 3 2 nd Combiner Ring 4 pulse compression & frequency multiplication t DL ~ 245 ns appropriate t fill => noise suppression at f = 1/t DL

16
14-Oct-2009CLIC DBA Rolf Wegner16 t fill [ns] damping factor D 245 ns D ≈ 1/18 368 ns D ≈ 1/4 124 ns D ≈ 1/4 combined optimisations 245 ± 8.5 ns D ≈ 1/17 t 0 = 245 ns Δt= 8.5 ns α= 2% combination for optimisation C(η RF,t fill )= f 1 (η RF ) + f 2 (t fill ) DBA structure tasks: acceleration => η RF noise damping => D, t fill f 1 (η RF )= 1- η RF f 2 (t fill )= α ((t fill -t 0 )/Δt) 2 appropriate t fill => noise suppression at f = 1/t DL

17
14-Oct-2009CLIC DBA Rolf Wegner17 optimisations

18
14-Oct-2009CLIC DBA Rolf Wegner18 optimisations

19
14-Oct-2009CLIC DBA Rolf Wegner19 optimisations

20
14-Oct-2009CLIC DBA Rolf Wegner20 optimisations η RF ≥ 97.5 % |t fill – 245 ns| ≤ 5 ns

21
14-Oct-2009CLIC DBA Rolf Wegner21 damping and detuning reduction of transverse wakefields by damping and detuning Alexej Grudiev’s suggestion: dampers in web (~18 mm tick) acc. mode Q 0 = 2.2 ∙10 4, Q ext = 3.7∙10 7 distorted, 0.1° 0.1 mm @ nose Q ext = 1.5 ∙10 6 P ext,peak = 110 W, P ext,avg = 0.83 W (P cell,peak = 30 kW, d.c. 0.75%) Ø≈ 25 cm

22
14-Oct-2009CLIC DBA Rolf Wegner22 damping and detuning reduction of transverse wakefields by damping and detuning beam may excite multiples of 0.5 GHz (only every other bucket filled) 11 cell structure R BP = 41 mm

23
14-Oct-2009CLIC DBA Rolf Wegner23 damping and detuning reduction of transverse wakefields by damping and detuning Q_11= 28 Q_07= 34 Q_01= 33 Q_11= 31

24
14-Oct-2009CLIC DBA Rolf Wegner24 next steps wakefield calculation optimisation of damping RF design beam dynamics mechanical design => iterations

25
14-Oct-2009CLIC DBA Rolf Wegner25 summary travelling wave structure for CLIC DBA efficiency ≥ 97% filling time 245 ns ± 5 ns input RF power 5 to 40 MW degree of freedom: no of cells BP radius transverse wakefield reduction by detuning and damping compact and effective damping

26
14-Oct-2009CLIC DBA Rolf Wegner26 additional slides

27
14-Oct-2009CLIC DBA Rolf Wegner27 additional slides

28
14-Oct-2009CLIC DBA Rolf Wegner28 additional slides

29
14-Oct-2009CLIC DBA Rolf Wegner29 additional slides

30
14-Oct-2009CLIC DBA Rolf Wegner30 additional slides

Similar presentations

OK

Beam loading compensation 300Hz positron generation (Hardware Upgrade ??? Due to present Budget problem) LCWS2013 at Tokyo Uni., 11-15 Nov. 2013 KEK, Junji.

Beam loading compensation 300Hz positron generation (Hardware Upgrade ??? Due to present Budget problem) LCWS2013 at Tokyo Uni., 11-15 Nov. 2013 KEK, Junji.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on 2 tier and 3 tier architecture Ppt on recycling of solid waste Ppt on conceptual art emphasizes Ppt on disaster management project Ppt on any one mathematician Ppt on online banking security Ppt on natural resources and conservation jobs Ppt on carl friedrich gauss Ppt on sources of energy for class 8th math Ppt on classical economics definition