Download presentation

Presentation is loading. Please wait.

Published bySylvia Dines Modified over 2 years ago

1
Non-linear Effects in Diffusion on Nanoscale Department of Solid State Physics University of Debrecen D.L. Beke Z. Erdélyi, I.A. Szabó, Cs. Cserháti

2
Diffusion in nanomaterials Two important features a) High numbers of grain- or phase boundaries (GB or PB) and dislocations - fast diffusion and solid st. reactions, segregation, etc. b) Principal problems (very short distances and preferably no structural defects)

3
Principal difficulties: -Short diffusion distances L d (continuum description fails) - Gradient energy corrections - Stress effects

4
Discrete (Martin‘s) model dc i /dt = -z v [c i (1-c i-1 ) i,i-1 – (1-c i )c i-1 i-1,i + + c i (1-c i+1 ) i,i+1 – c i+1 (1-c i ) i+1,i ]. i,i+1 = exp(-E i,i+1 /kT) „Classical” Fick I.-II. „Classical” Fick I.-II. j i,i+1 = -D i ( c/ x)/ c i / t = [D i ( c/ x)/ ]/ x

5
E i,i +1 =E o - i + i and E i+1,i = E o - i - i, V=V AB -(V AA +V BB )/2 i = [z v (c i-1 +c i+1 +c i +c i+2 ) + z l (c i +c i+1 )](V AA -V BB )/2 i V. Input parameters: z v, z l,V AA -V BB,V,T Input parameters: z v, z l,V AA -V BB,V,T(Z= 2z v +z l )

6
-validity limit -validity limit m= Z(V AA –V BB )/kT D i h =D(0)exp(mc)

7
Effect of the strong concentration dependence of D a-Si/Ge x Mo/V The interface reamins sharp and shifts! and shifts! T=1053 K 680K100h

8
Dissolution in ideal systems: Ni into Cu D(in Ni)<

9
Linear kinetics !!! Monte Carlo Ni side Interface Cu side

10
Experiment: AES from the top of Ni on Cu(111) T=679K

11
Sharpening of a wide interface (T=1000K, m’=9) Mo-VMo-V Ni-Cu

12
Growth of intermetallid layer:

13
i-1 ii+1 n nd 3 3 3 2 2 2 !3 2/ !2 2/ 2 x nd x nd x nd nn i d cc x c ii 1 d d cc d cc x c iiii 11 2 2 i-1 ii+1 n = =c/= =c/ 3 3 3 2 2 2 !3 2/ !2 2/ 2 x nd x nd x nd nn i d cc x c ii 1 d d cc d cc x c iiii 11 2 2

14
e.g. i = (V AA -V BB ){cZ +(z v +Z/4)d 2 2 c/ x 2 +...} = cZ(V AA -V BB )+ i ’ +... Introducing i, = exp[-(E o - i )/kT]= i h exp[ i ’ /kT]. and if i /kT«1 (i.e. exp[ i /kT] 1+ i /kT j i,i+1 = J i,i+1 /q= J i,i+1 d/ = -D i ( c/ x)/ + + D i [2 /f o ’’ - d 2 /24]( 3 c/ x 3 )/ +... D i =z v d 2 i ~V Fick I. Amorphous systems?, Stress effects…

15
X o =0 Constant concentration at the surface:

16
Conclusions (ideal systems): -At short distances the continuum descriptions fails and this strongly depends on the concentration dependence of D (non-linearity) - Non-linearity leads to shift of a sharp interface -The non-linearity leads to a linear shift of a sharp interface sharpening of an originally wide interface -Gradient energy corrections are important not only in the currents but also in the mobilities

17
Papers: CSIK, A., LANGER, G., BEKE, D.L., ERDÉLYI, Z., MENYHÁRD, M. SULYOK, A. Journal of Appl. Phys. 89/1, 804-806 (2001) BEKE, D.L., LANGER. G.A., CSIK, A., ERDÉLYI, Z., KIS-VARGA, M.,SZABÓ, I.A., PAPP, Z. Defect and Diff. Forum 194-199, 1403-1416 (2001) ERDÉLYI, Z., GIRARDEAUX., CH., BERNARDINI, J., BEKE, D.L, ROLLAND, A. Defect and Diff. Forum 194-199, 1161-1166 (2001) ERDÉLYI, Z, GIRARDEAUX, CH. TŐKEI, ZS. BEKE, D.L. CSERHÁTI, C., ROLLAND, A. Surf. Sci., 496/1-2, 129 (2002) ERDÉLYI, Z, GIRARDEAUX, CH. TŐKEI, ZS. BEKE, D.L. CSERHÁTI, C., ROLLAND, A. Surf. Sci., 496/1-2, 129 (2002) ERDÉLYI, Z, SZABÓ I.A., BEKE, D.L. Phys. Lev. Letters, in print

18
Chapters: BERNARDINI, J, BEKE, D.L., „Diffusion in Nanomaterials” in „Nanocrystalline materials: Properties and Applications” (Eds. Knauth, P., Schoonman, J.) Kluwer Academic Publ., Boston, 2001 BEKE, D.L. CSERHÁTI, C., ERDÉLYI, Z., SZABÓ, I.A., “Segregation in Nanostructures” in „Advances in Nanophase materials and nanotechnology” Volume: „Nanoclusters” (ed. H.S. Nalwa) American Scientific Publ., 2002, in print SIDORENKO, S., BEKE. D.L., KIKINESHI, A., “Materials Science of Nanosctutures, Naukova Dumka, Kiyv, 2002

Similar presentations

OK

Fick’s Laws Combining the continuity equation with the first law, we obtain Fick’s second law:

Fick’s Laws Combining the continuity equation with the first law, we obtain Fick’s second law:

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google