Presentation is loading. Please wait.

Presentation is loading. Please wait.

Prospettive Future con gli Accel. a LNF, 11-06-2010 LI 2 FE: Laboratorio Integrato Interdisciplinare con Fotoni ed Elettroni Luca Serafini - INFN/Mi LI.

Similar presentations


Presentation on theme: "Prospettive Future con gli Accel. a LNF, 11-06-2010 LI 2 FE: Laboratorio Integrato Interdisciplinare con Fotoni ed Elettroni Luca Serafini - INFN/Mi LI."— Presentation transcript:

1 Prospettive Future con gli Accel. a LNF, 11-06-2010 LI 2 FE: Laboratorio Integrato Interdisciplinare con Fotoni ed Elettroni Luca Serafini - INFN/Mi LI 2 FE (Laboratorio Integrato Interdisciplinare con Fotoni ed Elettroni) comprende: Fotoiniettore, Beam Lines e Ondulatore di SPARC, FLAME laser & beam lines, strumentazione associata, THE PEOPLE EXPERTISE LI 2 FE ha le potenzialità per diventare nel prossimo triennio una infrastruttura di ricerca unica a livello mondiale per integrazione di fasci di e - ad altissima brillanza e fasci di fotoni ad altissima intensità, sincronizzati al fsec => abbattere la barriera [ fsec - Angstrom - TV/m ]

2 High Brightness Electron Beams (ps to fs bunch length) High Intensity Laser Beams (20-100 fs pulses) SPARC (Sorgente Pulsata e Amplificata di Radiazione Coerente) and PLASMONX (PLasma Acceleration @ Sparc & MONochromatic X-rays) Unique worldwide at these level of combined beam performance Synchronized to fs level Prospettive Future con gli Accel. a LNF, 11- 06-2010

3  n [  m] 10 13 10 14 10 15 10 16 10 17 I [kA] 10 18 AOFEL SPARX SPARC X-ray FEL @ 1 pC The Electron Beam Brightness Chart [A/(m. rad) 2 ] Self-Inj Ext-Inj Prospettive Future con gli Accel. a LNF, 11- 06-2010 LCLS

4 Prospettive Future con gli Accel. a LNF, 11-06-2010  [  ] 10 14 10 15 10 16 10 17 BnBn SPARX SPARC The 6D Brilliance Chart [A/((m. rad) 2 0.1%)] Self-Inj Ext-Inj AOFEL X-ray FEL @ 1 pC

5 Prospettive Future con gli Accel. a LNF, 11-06-2010 SASE-FELs will allow an unprecedented upgrade in Source Brilliance Covering from the VUV to the 1 Å X-ray spectral range: new Research Frontiers SPARX TTF 12.41.240.124 (nm) Thomson Source @ LNF Compact Thomson Sources extend SR to hard X-ray range allowing Advanced Radiological Imaging inside Hospitals Brilliance of X-ray radiation sources FLAME Beam characteristic Invariant under linear optics

6 Prospettive Future con gli Accel. a LNF, 11-06-2010 The Laser Pulse Intensity Chart FLAME @ INFN-LNF

7 Prospettive Future con gli Accel. a LNF, 11-06-2010 Development of wide inter-disciplinary research program, combining Plasma-based Accelerators (drive plasmas at 7. 10 19 cm -3 => TV/m either with ultra-fast fsec electron bunches or with high intensity ultra-short laser pulses), leading in turns to production of a variety of advanced beams of FEL/THz radiation, advanced beams of X/  rays, protons/light ions, and potentials for polarized positrons and neutrons of unique characteristics. LI 2 FE: the Scientific Program Common Denominator: High Phase Space Density

8 Prospettive Future con gli Accel. a LNF, 11-06-2010 Thomson Source: Collide beams in vacuum 3 Examples for LI 2 FE Plasma Accelerator with External Injection: Copropagate beams in plasma Particle Wakefield Acceleration: where the FEL machine development meets the High Energy Frontier (TV/m with fsec electron bunches)

9 1-25 GeV electrons 100-0.5 Å Photons (0.12-24 keV) cm und. period  u FEL’s and Thomson Sources common mechanism: collision between a relativistic electron and a (pseudo)electromagnetic wave 20-150 MeV electrons 0.8  m laser  20-500 keV photons 3 km 20 m Laser Synchrotron Light Source Thomson Limit: electron recoil negligible (<< natural spectral bandwidth) Prospettive Future con gli Accel. a LNF, 11-06-2010

10 FEL resonance condition (magnetostatic undulator ) Example : for R =1A, w =2cm, E=7 GeV (electromagnetic undulator ) Example : for R =1A, =0.8  m, E=25MeV laser power laser spot size

11 Prospettive Future con gli Accel. a LNF, 11-06-2010 Scattered photons in collision Thomson X-section Scattered flux Luminosity as in HEP collisions –Many photons, electrons –Focus tightly –Short laser pulse; <few psec (depth of focus) Scattered flux Luminosity as in HEP collisions –Many photons, electrons –Focus tightly –Short laser pulse; <few psec (depth of focus)

12 Prospettive Future con gli Accel. a LNF, 11-06-2010 e-e- X e-e- X focus envelope Spectral broadening due to ultra-focused beams

13 Prospettive Future con gli Accel. a LNF, 11-06-2010 Energy-angular Spectral distribution For an e-bunch the energy spread of the collected photons depends on –Collecting angle  M –Bunch energy spread –Transverse emittance Overlap Full treatement of linear and nonlinear TS for a plane-wave laser pulse with analytical expression of the distributions as well as several approximate expressions in P. Tomassini et al., Appl. Phys. B 80, 419 (2005).

14 Prospettive Future con gli Accel. a LNF, 11-06-2010 Angular and spectral distribution of the TS radiation in the case of 3 ps laser pulse (12.5 µm beam waist) Linear Thomson Scattering

15 Prospettive Future con gli Accel. a LNF, 11-06-2010 Schematic layout of electron beam lines for FEL, Plasma Acceleration and Thomson Source experiments El. Beam transport Line 1.1 M€ (+0.1) SPARC/X MIUR

16

17 Prospettive Future con gli Accel. a LNF, 11-06-2010 Applications of monochromatic ICS photons X-ray transmission through 100 µm of metal Probing macroscopic metals requires x-ray energies above 10 keV Ultra-fast materials characterization –X-rays (keV) for penetrating metals –Example: INFN/LNF, PLEIADES/LLNL Biology and medicine –Breakthrough diagnosis/therapy Intermediate energy (MeV) –Slow positrons (for materials) –Nuclear materials detection High energy physics (GeV) –  collider, polarized e + Ultra-fast materials characterization –X-rays (keV) for penetrating metals –Example: INFN/LNF, PLEIADES/LLNL Biology and medicine –Breakthrough diagnosis/therapy Intermediate energy (MeV) –Slow positrons (for materials) –Nuclear materials detection High energy physics (GeV) –  collider, polarized e + Single Shot Imaging at psec time scale (not accessible to FEL for h > 20 keV and precluded to Synchr. Light Sources, which are CW)

18 Prospettive Future con gli Accel. a LNF, 11-06-2010 Option A): upgrade SPARC energy to 650 MeV and collide with 2 nd -harmonic of FLAME (psec pulses) => narrow bandwidth (1%) lower flux (10 10 ph/s, 10 12 ph/s with recirculator ) Towards MeV-class Compton Source @ LI 2 FE Option B): SITE-like e-beams at 950 MeV collide with ps-FLAME half-pulse (All Optical scheme) => higher flux (10 11 ph/s) larger bandwidth (25%) Aiming at record spectral density of 10 4 ph/eV/sec

19 CO 2 envelope propagating laser envelope e - beam 25 fs FLAMEpulse plasma CO 2 focus Z [m] r  m] High Energy Photon Beams (5-20 MeV) byAll Optical Thomson Prospettive Future con gli Accel. a LNF, 11-06-2010 Counterpropagating 4 ps FLAME pulse counter-propagating laser envelope

20 Prospettive Future con gli Accel. a LNF, 11-06-2010 C. Benedetti

21 16 MeV20 MeV12 MeV Bandwith-rms = 25% N ph = 1.3 10 10 sec -1 5 10 3 ph. eV -1 sec -1 Prospettive Future con gli Accel. a LNF, 11-06-2010

22

23

24

25 Positron production at PLASMON-X 70 cm W Target 1-2-5 mm 4 mm Beam spot (1 mm) E  =20 MeV ;  E/E=0

26 10 different FLUKA runs with 10 7 particle each 1 mm 2 mm Target length 5 mm

27 Spectra Spectra (double differential) 1 mm 5 mm 2 mm

28 Target Geometry (mm) Positron produced (e + pr -1 ) ± err% LengthRadiusForwardSideBackward 126.9E-02 ± 65.4E-04 ± 0.62.5E-03 ± 0.3 229.2E-02 ± 45.7E-04 ± 0.13.1E-03 ± 0.3 527.6E-02 ± 5===3.2E-03 ± 0.3 Having a primary photon flux of 10 10 photons/shot, about 6*10 8 forward positrons can be obtained, with 10 ps long bunches (single shot) at 10% energy spread, allowing studying the spectroscopy of Para-Positronium (half life 100 psec) (priv. comm. M. Giammarchi INFN- Mi and G.Consolati Poli-Mi).

29 Prospettive Future con gli Accel. a LNF, 11-06-2010 Schematic layout of electron beam lines for FEL, Plasma Acceleration and Thomson Source experiments El. Beam transport Line 1.1 M€ (+0.1) SPARC/X MIUR

30 Prospettive Future con gli Accel. a LNF, 11-06-2010 Iniezione adiabatica del pacchetto di elettroni generato da SPARC nel plasma quando l’impulso laser non e’ ancora focalizzato completamente. Le crescenti forze focalizzanti comprimono adiabaticamente il bunch fino alle dimensioni trasverse ottimali LI 2 FE: the Plasma Accelerator (exploitation of velocity bunching and synchronization)

31 Injected Bunch: 13pC, 150MeV, 0.6 mm.mrad,  x 3.0  m rms,  z 2.4  m rms [1KA peak current] Laser: 7J in 35fs, w 0 =32.5  m, w 0_inj =135  m, guided over 30 Z R. Plasma: Density profile increasing from 0.6e17 cm -3 up to 0.8e17 cm -3, “tapered channel” for pulse guiding. Acceleration length about 15cm: 20 GeV/m Numerics: Window mobile at v=c, grid sampling at 46points/  p e 26 points/w. Bunch described by 40000 macro-particles LIFE: the Plasma Accelerator (acceleration of high brightness electron beams) Prospettive Future con gli Accel. a LNF, 11- 06-2010

32 Dynamics in longitudinally inhomogenous plasmas Il controllo della velocita’ di fase dell’onda si ottiene profilando adeguatamente la densita’ del plasma Prospettive Future con gli Accel. a LNF, 11- 06-2010

33 = 2.01 GeV  E/E = 0.8% rms  n =0.6  m External Injection of a 10 fs 15 pC electron bunch generated by SPARC photoinjector into a LWFA Prospettive Future con gli Accel. a LNF, 11- 06-2010

34

35 Brightness good enough to drive a X-ray FEL B_peak=2I/  2 =3.5. 10 16 A/m 2 Prospettive Future con gli Accel. a LNF, 11- 06-2010

36 Requested Jitter: 100 fsec (further reduction down to 20 fsec thanks to velocity bunching)

37 Prospettive Future con gli Accel. a LNF, 11-06-2010 Targetring Hollow fiber Gas jet with density step Gas cell with density modulation Etc..

38 Prospettive Future con gli Accel. a LNF, 11-06-2010 Thomson Source: Collide beams in vacuum 3 Examples for LI 2 FE Plasma Accelerator with External Injection: Copropagate beams in plasma Particle Wakefield Acceleration: where the FEL machine development meets the High Energy Frontier (TV/m with fsec electron bunches)

39 Historical schematic of accelerators: Particle physics leads, spin-offs follow quickly Electrostatic Accelerators Betatron Cyclotron Ion Linear Accelerators 1930 2030 Synchrotron Circular Collider Superconducting Circular Collider Electron Linear Accelerators Electron Linear Colliders Muon Collider? VLHC? Medicine Light sources (3 rd Generation) Nuclear physics X-ray FEL Laser/Plasma Accelerators? Ultra-High Energy LC? FFAG, etc. 11thICATPP, Villa Olmo, Oct. 5th, 2009 Breaking the Barrier of TV/m (!) Prospettive Future con gli Accel. a LNF, 11-06-2010

40 Plasma Wakefield Acceleration (PWFA)  Electron beam shock-excites plasma  Same scaling as Cerenkov wakes, maximum field scales in strength as  In “blowout” regime, plasma e-’s expelled by beam. Ion focusing + EM acceleration= plasma linac Prospettive Future con gli Accel. a LNF, 11-06-2010

41 Ultra-short beam application: IR wavelength PWFA Ultra-high brightness, fs beams impact HEP also! Use 20 pC LCLS beam in high n plasma In “blowout” regime: total rarefaction of plasma e - s –Beam denser than plasma –Very nonlinear plasma dynamics –Pure ion column focusing for e-s –Linac-style EM acceleration –General measure of nonlinearity: MAGIC simulation of blowout PWFA case Z (mm) R (mm) Prospettive Future con gli Accel. a LNF, 11- 06-2010

42 With 2 fs LCLS beam we should choose For 2 pC beam, we have Breaking the Barrier of TV/m (!) –Also w/o plasma (ionization) –New frontier in atomic physics Collaboration formed –UCLA-SLAC-USC –Technical issues address OOPIC simulation of LCLS case 1 TV/m accelerating field: a dream for a table-top TeV-class e - e + collider? Prospettive Future con gli Accel. a LNF, 11- 06-2010

43

44 Unprecedented results in Application Experiments due to unique beams available needless to say… we need the correct Spirit of sharing Expertise and Instrumentation LI 2 FE Window of Opportunity (5 year span) Crucial Role in advancing new technologies for the High Energy Frontier

45 Prospettive Future con gli Accel. a LNF, 11-06-2010 LI 2 FE: Progetti ed Esperimenti INFN SPARC - Progetto Speciale INFN (cofinanziato da MIUR, CNR, ENEA) PLASMONX - Sottoprogetto NTA (Nuove Tecniche Accelerazione) SPARX - MIUR, Reg. Lazio, ENEA, CNR, Univ. Tor Vergata BEATS - Commissione Scientifica Naz. V LILIA - Commissione Scientifica Naz. V TERASPARC - Commissione Scientifica Naz. V

46 Prospettive Future con gli Accel. a LNF, 11-06-2010 LI 2 FE: Collaboration Board Dimitri Batani - Università Milano Bicocca Maurizio Benfatto - Lab. Naz. Frascati INFN Massimo Carpinelli - Univ. di Sassari Giuseppe Dattoli - ENEA Frascati Giampiero Dipirro - Lab. Naz. Frascati INFN Massimo Ferrario - Lab. Naz. Frascati INFN Santo Gammino - Lab. Naz. del Sud INFN Luca Giannessi - ENEA Frascati Danilo Giulietti - Università di Pisa Leonida Gizzi - ILIL-IPCF, CNR, Pisa Stefano Lupi - Univ. Roma La Sapienza Carlo Mariani - Univ. Roma La Sapienza Luigi Palumbo - Univ. Roma La Sapienza Valerio Rossi Albertini - ISM, CNR, Roma Luca Serafini, chair - INFN Sez. di Milano More Details in: http://www.lnf.infn.it/acceleratori/life/

47 Prospettive Future con gli Accel. a LNF, 11-06-2010

48 Thomson Source Commissioning Schedule Prospettive Future con gli Accel. a LNF, 11-06-2010

49

50

51

52

53 EXPERIMENTS UNDER PROPOSAL/DESIGN -IFEL (high gradient acceleration in vacuum via inverse free electron laser of SPARC electron bunches driven by FLAME laser into an ad- hoc tapered undulator) -PLASMA ACCELERATOR (external injection of ultra-short SPARC electron bunches into plasma waves driven by FLAME) -FRESH-BUNCH technique investigation in seeding and harmonic cascade FEL mode - High Energy (5-20 MeV) photon beams by All Opt. Thomson (Crystal Chann.?) for Nuclear Physics (GDR) and Radioisotope Prod. LI 2 FE: Scientific Program up to the horizon

54 Prospettive Future con gli Accel. a LNF, 11-06-2010 LI 2 FE beyond the horizon ( an acceleratorist’s vision ) PWFA (particle wakefield acceleration) using hyper-short SPARC electron bunches (1pC, sub-fs) to drive plasma waves up to TV/m accelerating fields (beating the high energy frontier)

55 Prospettive Future con gli Accel. a LNF, 11-06-2010

56 Asymptotic linear growth of norm. emittance with distance, as predicted by formula Which gives, for C. Benedetti’s simulations of SITE, 500 mm.mrad per meter of free space drift (matches upper plot in first 10 cm drift before quadrupoles) M. Migliorati Prospettive Future con gli Accel. a LNF, 11-06-2010

57 Dai Plasma-Cathodes agli Acceleratori a Plasma Luca Serafini, INFN-Milano Il conseguente deterioramento di Brillanza è incompatibile con un acceleratore per High Energy Frontier (TeV collider) e con radiazione narrow-band mediante FEL o Thomson back-scatt. Il processo di autoiniezione basato su bubble-regime (SITE- like) produce fasci con difetto genetico: eccesso di cromatismo Opzione A: auto-iniezione in step density gradient (AOFEL) e booster in capillare (schema LBNL, exp. BELLA) (A look at the particle beam beyond the laser-plasma source) Opzione B: iniezione esterna di un bunch da SPARC e booster in capillare pilotato da FLAME

58 Prospettive Future con gli Accel. a LNF, 11-06-2010

59 Advanced Accelerators for Particle Physics and Applications (X-ray FELs, Compact Light Sources, particle beams for medicine, etc. and their positive feedbacks on HEP accelerators!) James B. Rosenzweig 1, Luca Serafini 2 1 UCLA Dept. of Physics and Astronomy 2 INFN - Milan Reinventing the Accelerator for the High Energy Frontier Reinventing the Accelerator for the High Energy Frontier Talk available at http://pcfasci.fisica.unimi.it/Homepage.html Prospettive Future con gli Accel. a LNF, 11-06-2010

60 Conclusioni Citando Chen Joshi di UCLA, che ha dichiarato all’ ICFA workshop on Laser and Plasma Accelerators (LPAW09, Kardamyli, june 2009) : “We need to move LPA experiments from the Shoot-and-See towards a real Accelerator” Abbiamo una window of opportunity di circa 2-3 anni per mettere in funzione a LNF un vero Acceleratore a Plasma che sia un precursore di un TeV-class collider

61 Prospettive Future con gli Accel. a LNF, 11-06-2010

62

63

64 Sub-fs e - 1 pC bunches @ SPARC First attempt (A. Bacci with gen. algorithm) Sub-fs e - 1 pC bunches @ SPARC First attempt (A. Bacci with gen. algorithm) Prospettive Future con gli Accel. a LNF, 11- 06-2010

65 Ultra-short XFEL pulses: motivation and feedback to HEP Investigations at atomic electron spatio-temporal scales –Angstroms-nanometers (~Bohr radius) –Femtoseconds (electronic motion, Bohr period) Femtochemistry, etc. 100 fs accessible using standard techniques Many methods proposed for the fsec frontier Use “clean” ultra-short electron beam –Myriad of advantages in FEL and beam physics –Robust in application: XFEL, coherent optical source, PWFA… How a HEP Spin-Off, the X-ray FEL, can return a positive feedback in advancing Accelerators toward the High Energy Frontier Prospettive Future con gli Accel. a LNF, 11- 06-2010

66 Ultra-short pulses at SPARX Scaling indicates use of ~1 pC beam for single spike For 1 pC,  z only 4.7  m after velocity bunching Use June 2008 version of SPARX lattice –compression no longer at end, at 1.2 GeV (Final 2.1 GeV) Very high final currents, –some CSR emittance growth, for 1 pC –Longitudinal tails, higher peak brightness (2 orders of magnitude!) Q=1 pC case Prospettive Future con gli Accel. a LNF, 11- 06-2010

67 FEL performance: 1 pC, 2 fs e - bunch Single spike with some structure > 1 GW peak power at saturation (30 m) 480 attosecond rms pulse at 2 nm at SPARX s (  m)  nm  z (m) z  Prospettive Future con gli Accel. a LNF, 11-06-2010

68

69

70 The combined availability of these Beam Sources and related instrumentation, together with advanced expertise in the accelerator/laser/plasma physics and technologies, will lead to unprecedented potentials of research and discoveries at INFN- LNF (multi-institutional effort, INFN, ENEA, CNR, many Univ.) User experiments: application oriented (investigation of matter at functional level) Developer experiments: technique oriented (toward the high energy frontier, propedeutical to investigation of matter at fundamental level) LI 2 FE: the Scientific Program

71 Prospettive Future con gli Accel. a LNF, 11-06-2010 FEL physics and applications Advanced beam physics Laser/Plasma based ion sources Advanced radiation sources and applications Laser/Plasma physics Ultra-high gradient acceleration (plasma, vacuum, IFEL) LI 2 FE: main Research Areas

72 Prospettive Future con gli Accel. a LNF, 11-06-2010

73 Brightness of Electron Beam is a Key Factor beam {peak,average} current density in phase-space (i.e. current density per unit solid angle) I = peak current in fs to ps long electron bunch = average current over 1 s  nx = rms normalized transverse emittance z    ’  x x’  eq  ’ high  ’ low Brightness is crucial to maintain colliding or copropagating (e -, h ) beams well overlapped (enhancing coherence…)   n  n  n  n

74 Prospettive Future con gli Accel. a LNF, 11-06-2010 E Physics scenario E-beam rest frame Radiated field, linear pol. General View: Lab frame e- beam Intense Laser Thomson limit (180° ICS) X-ray flux depends on overlapping electrons, laser photons Lorentz boosted radiation forward directed Doppler upshifted, angular redshift Thomson limit valid up to  -rays of 25 MeV (T e <1.25 GeV) with e - recoil < 1% In Thomson Limit the X-ray beam divergence and Spectrum are determined by the electron beam characteristics

75 Prospettive Future con gli Accel. a LNF, 11-06-2010

76

77 Spectra


Download ppt "Prospettive Future con gli Accel. a LNF, 11-06-2010 LI 2 FE: Laboratorio Integrato Interdisciplinare con Fotoni ed Elettroni Luca Serafini - INFN/Mi LI."

Similar presentations


Ads by Google