Download presentation

Presentation is loading. Please wait.

Published byCarlos Dews Modified over 2 years ago

1
Projective Geometry from a historical perspective webb: http://kmr.nada.kth.se Ambjörn Naeve KMR (Knowledge Management Research group) CID (Centrum för användarorienterad IT Design) NADA (Institutionen för Numerisk Analys och Datalogi) KTH (Kungliga Tekniska Högskolan) e-mail: amb@nada.kth.se

2
Alberti’s construction

3
Complete quadrangle - 1

4
Complete quadrangle - 2

5
Complete quadrilateral - 1

6
Complete quadrilateral - 2

12
Elliptisk involution

13
Hyperbolisk involution

14
Projectified cartesian coord. syst. in 2 dim

15
Projectified cartesian coords in 2 dim

17
Unit-point - unit-line in P2

21
Involution-1.1.

22
Involution-1.2.

23
Involution-1.3.

24
Involution-2.1.

25
Involution-2.2.

26
Involution-3.1.

27
Moebius-angle-cross-ratio-1

28
Moebius-angle-cross-ratio-2

29
Moebius-net

30
Pascal’s theorem from Steiner’s theorem-1

31
Pascal’s theorem from Steiner’s theorem-2

32
Projective coordiates - 1

33
Projective coordiates - 2

34
Projective coordiates - 3

35
Projective coordiates - 4

36
Seydewitz sats - 1

37
Seydewitz sats - 2

38
Seydewitz sats - 3&4

39
Självpolär Diagonaltriangel - 1

40
Självpolär Diagonaltriangel - 2

41
Steiner’s sats - 1

42
Steiner’s sats - 2

43
Steiner’s sats - 3&4

44
Steiner’s sats -5

45
Polaritet inducerar involution - 1

46
Polaritet inducerar involution - 2

47
Polaritet inducerar involution - 3

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google