Presentation is loading. Please wait.

Presentation is loading. Please wait.

Energy for a Shared Development Agenda Charles Heaps, Ph. D. Director, SEI U.S. Center

Similar presentations

Presentation on theme: "Energy for a Shared Development Agenda Charles Heaps, Ph. D. Director, SEI U.S. Center"— Presentation transcript:

1 Energy for a Shared Development Agenda Charles Heaps, Ph. D. Director, SEI U.S. Center

2 Where are We Headed? Excerpts from Latest World Bank Report Turn Down the Heat (November 2012) Present emission trends put the world plausibly on a path toward 4°C warming within century. Even with current mitigation commitments and pledges fully implemented, there is roughly a 20% likelihood of exceeding 4°C by 2100. If not met, a warming of 4°C could occur as early as the 2060s. Further warming to levels over 6°C, with several meters of sea-level rise, would likely occur over the following centuries. A 4°C world would be one of unprecedented heat waves, severe drought, and major floods in many regions, with serious impacts on human systems, ecosystems, and associated services.` Given that uncertainty remains about the full nature and scale of impacts, there is no certainty that adaptation to a 4°C world is possible.

3 Reasons for Concern Source: PNAS, Feb 2009

4 Energy for a Shared Development Agenda: Global Scenarios and Governance Implications Examines how energy needs for development can be met in a way that is compatible with meaningful development. Includes new global energy scenarios, case studies of transformation, and a review of policy governance frameworks. Developed for the Rio +20 Conference on Sustainable Development, organized by the U.N. Commission on Sustainable Development. An SEI report developed in partnership with ACPC (Africa), FBDS and COPPE (Brazil), IIASA (Austria) PBL (Netherlands), TERI (India) and WRI (USA). Full report available here:

5 Objectives Explores how global energy systems might be reconfigured to address sustainability whilst also providing meaningful development. Goes beyond basic energy access to explore sustainable energy for all at levels that can underpin economic activity consistent with at least middle income levels in all countries.

6 Study Methodology Builds upon the Global Energy Assessment (IIASA, PBL, SEI etc.). Detailed sectoral modeling of 20 global regions using SEI’s LEAP software (shown right). A key subsidiary goal was to create a transparent, open source, global data set, freely available to all. Available here: Web-based interactive scenario explorer also coming soon.

7 Three Scenarios Baseline (BAS) Historical trends and likely regional futures, assuming no major new efforts to tackle climate change or poverty. Basic Energy Access (BEA) Similar economic trends to BAS but with major efforts to mitigate climate change, and basic energy access for all by 2050. Shared Development Agenda (SDA) Builds upon BEA. Faster growth in the poorest regions so that average per capita GDP reaches at least $10,000 PPP by 2050. Balanced by slightly slower growth in richest regions for same overall global GDP and similar emissions constraints.

8 More Equitable Income Distribution (2005 Dollars PPP per Capita)

9 Growth in Average Incomes in West Africa

10 More Equitable Income Distribution (‘000 2005 Dollars PPP per Capita) 2010 2050 Baseline 2050 Shared Development

11 Improved Income Distribution in SDA Gini coefficients improve in each region as levels of democratic participation improve and countries become better governed. GINI analysis: Eric Kemp-Benedict

12 Poverty Levels in Baseline vs. SDA

13 Cumulative CO 2 Emissions Already Emitted (2000-2012): ~406 GT CO 2

14 CO 2 Emissions Reductions: BEA vs. BAS

15 SDA Primary Energy Requirements

16 SDA: Primary Energy Requirements vs. Best Guesses of Sustainable Resource Base Sources: SEI, GEA

17 SDA: Evolution of Energy Demand in 3 Regions EJ

18 Global Energy Sector CO2 Emissions: Selected Scenarios

19 Required Energy Intensity Declines: Selected Scenarios Energy Intensity (GJ/$ of GDP)

20 Key Strategies & Measures Energy Efficiency: Very high levels of insulation of buildings, lighting, heating, cooling, industrial processes, road vehicles, shipping and airplanes. Switching to Low Carbon Fuels Switching from coal and oil to sustainably grown biomass and limited use of natural gas w/CCS. May also require expansion of nuclear. Sufficiency Loosen tight link between economic growth and consumption of goods and services. Electrification and Renewables Helps achieve efficiency goals and eliminate CO 2 in end-use sectors. Requires that electricity production has close to zero emissions of CO 2 (renewables and some nuclear and CCS).

21 Conclusions SDA entails significant risks (40% chance of exceeding 2°C, while even 2°C likely to be insufficient for climate protection). Mitigation goals extremely challenging, but still be technically feasible if political will emerges almost immediately. –Requires significant climate action in all regions. –Dramatic improvements in energy intensities (-2.8%/year) required: requires technical and sufficiency measures. –Up to 8900 GW of wind may be required by 2050. Requires building 248 GW per year (2015-2050 ) - 25 times recent global build rate! Minimal additional impacts on energy use and CO 2 emissions vs. BEA scenarios. CO 2 increases by 4.3% in 2050 vs. BEA. Need to weigh increased emissions against huge social benefits and likelihood that greater equity is a precondition for concerted global climate action.

Download ppt "Energy for a Shared Development Agenda Charles Heaps, Ph. D. Director, SEI U.S. Center"

Similar presentations

Ads by Google