Download presentation

Presentation is loading. Please wait.

Published byBrianna Rawlins Modified about 1 year ago

1
ConcepTest Clicker Questions Chapter 8 College Physics, 7th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.

2
Question 8.1aBonnie and Klyde I Bonnie Klyde Bonnie sits on the outer rim of a merry-go-round, and Klyde sits midway between the center and the rim. The merry-go-round makes one complete revolution every 2 seconds. Klyde’s angular velocity is: a) same as Bonnie’s b) twice Bonnie’s c) half of Bonnie’s d) one-quarter of Bonnie’s e) four times Bonnie’s

3
angular velocity is the same The angular velocity of any point on a solid object rotating about a fixed axis is the same. Both Bonnie and Klyde go around one revolution (2 radians) every 2 seconds. Question 8.1aBonnie and Klyde I Bonnie Klyde Bonnie sits on the outer rim of a merry-go-round, and Klyde sits midway between the center and the rim. The merry-go-round makes one complete revolution every 2 seconds. Klyde’s angular velocity is: a) same as Bonnie’s b) twice Bonnie’s c) half of Bonnie’s d) one-quarter of Bonnie’s e) four times Bonnie’s

4
Question 8.1bBonnie and Klyde II Bonnie Klyde a) Klyde b) Bonnie c) both the same d) linear velocity is zero for both of them Bonnie sits on the outer rim of a merry-go-round, and Klyde sits midway between the center and the rim. The merry-go-round makes one revolution every 2 seconds. Who has the larger linear (tangential) velocity?

5
linear speeds v v = r Bonnie is located farther out Their linear speeds v will be different because v = r and Bonnie is located farther out (larger radius r) than Klyde. Bonnie Klyde Question 8.1bBonnie and Klyde II Follow-up: Who has the larger centripetal acceleration? a) Klyde b) Bonnie c) both the same d) linear velocity is zero for both of them Bonnie sits on the outer rim of a merry-go-round, and Klyde sits midway between the center and the rim. The merry-go-round makes one revolution every 2 seconds. Who has the larger linear (tangential) velocity?

6
Suppose that the speedometer of a truck is set to read the linear speed of the truck but uses a device that actually measures the angular speed of the tires. If larger diameter tires are mounted on the truck instead, how will that affect the speedometer reading as compared to the true linear speed of the truck? a) speedometer reads a higher speed than the true linear speed b) speedometer reads a lower speed than the true linear speed c) speedometer still reads the true linear speed Question 8.2Truck Speedometer

7
Suppose that the speedometer of a truck is set to read the linear speed of the truck but uses a device that actually measures the angular speed of the tires. If larger diameter tires are mounted on the truck instead, how will that affect the speedometer reading as compared to the true linear speed of the truck? a) speedometer reads a higher speed than the true linear speed b) speedometer reads a lower speed than the true linear speed c) speedometer still reads the true linear speed The linear speed is v = R. So when the speedometer measures the same angular speed as before, the linear speed v is actually higher, because the tire radius is larger than before. Question 8.2Truck Speedometer

8
An object at rest begins to rotate with a constant angular acceleration. If this object rotates through an angle in the time t, through what angle did it rotate in the time t? a) b) c) d) 2 e) 4 Question 8.3aAngular Displacement I ½ ¼ ¾ ½

9
An object at rest begins to rotate with a constant angular acceleration. If this object rotates through an angle in the time t, through what angle did it rotate in the time t? a) b) c) d) 2 e) 4 half the timeone-quarter the angle The angular displacement is = t 2 (starting from rest), and there is a quadratic dependence on time. Therefore, in half the time, the object has rotated through one-quarter the angle. Question 8.3aAngular Displacement I ½ ¼ ¾ ½

10
An object at rest begins to rotate with a constant angular acceleration. If this object has angular velocity at time t, what was its angular velocity at the time t? a) ½ b) ¼ c) ¾ d) 2 e) 4 Question 8.3bAngular Displacement II ½

11
An object at rest begins to rotate with a constant angular acceleration. If this object has angular velocity at time t, what was its angular velocity at the time t? half the time half the speed The angular velocity is = t (starting from rest), and there is a linear dependence on time. Therefore, in half the time, the object has accelerated up to only half the speed. Question 8.3bAngular Displacement II a) ½ b) ¼ c) ¾ d) 2 e) 4 ½

12
Question 8.4Using a Wrench You are using a wrench to loosen a rusty nut. Which arrangement will be the most effective in loosening the nut? a c d b e) all are equally effective

13
You are using a wrench to loosen a rusty nut. Which arrangement will be the most effective in loosening the nut? a c d b largest lever armcase #2 largest torque Because the forces are all the same, the only difference is the lever arm. The arrangement with the largest lever arm (case #2) will provide the largest torque. e) all are equally effective Follow-up: What is the difference between arrangement 1 and 4? Question 8.4Using a Wrench

14
Two forces produce the same torque. Does it follow that they have the same magnitude? a) yes b) no c) depends Question 8.5Two Forces

15
Two forces produce the same torque. Does it follow that they have the same magnitude? a) yes b) no c) depends Because torque is the product of force times distance, two different forces that act at different distances could still give the same torque. Question 8.5Two Forces Follow-up: If two torques are identical, does that mean their forces are identical as well?

16
Question 8.6Closing a Door In which of the cases shown below is the torque provided by the applied force about the rotation axis biggest? For all cases the magnitude of the applied force is the same. a) F 1 b) F 3 c) F 4 d) all of them e) none of them

17
Question 8.6Closing a Door a) F 1 b) F 3 c) F 4 d) all of them e) none of them In which of the cases shown below is the torque provided by the applied force about the rotation axis biggest? For all cases the magnitude of the applied force is the same. = rFsin 90° largest torque perpendicularly The torque is = rFsin and so the force that is at 90° to the lever arm is the one that will have the largest torque. Clearly, to close the door, you want to push perpendicularly!! Follow-up: How large would the force have to be for F 4 ?

18
When a tape is played on a cassette deck, there is a tension in the tape that applies a torque to the supply reel. Assuming the tension remains constant during playback, how does this applied torque vary as the supply reel becomes empty? a) torque increases b) torque decreases c) torque remains constant Question 8.7Cassette Player

19
When a tape is played on a cassette deck, there is a tension in the tape that applies a torque to the supply reel. Assuming the tension remains constant during playback, how does this applied torque vary as the supply reel becomes empty? a) torque increases b) torque decreases c) torque remains constant As the supply reel empties, the lever arm decreases because the radius of the reel (with tape on it) is decreasing. Thus, as the playback continues, the applied torque diminishes. Question 8.7Cassette Player

20
Question 8.8aDumbbell I a) case (a) b) case (b) c) no difference d) it depends on the rotational inertia of the dumbbell A force is applied to a dumbbell for a certain period of time, first as in (a) and then as in (b). In which case does the dumbbell acquire the greater center-of-mass speed ?

21
Question 8.8aDumbbell I a) case (a) b) case (b) c) no difference d) it depends on the rotational inertia of the dumbbell A force is applied to a dumbbell for a certain period of time, first as in (a) and then as in (b). In which case does the dumbbell acquire the greater center-of-mass speed ? Because the same force acts for the same time interval in both cases, the change in momentum must be the same, thus the CM velocity must be the same.

22
a) case (a) b) case (b) c) no difference d) it depends on the rotational inertia of the dumbbell A force is applied to a dumbbell for a certain period of time, first as in (a) and then as in (b). In which case does the dumbbell acquire the greater energy ? Question 8.8bDumbbell II

23
a) case (a) b) case (b) c) no difference d) it depends on the rotational inertia of the dumbbell A force is applied to a dumbbell for a certain period of time, first as in (a) and then as in (b). In which case does the dumbbell acquire the greater energy ? If the CM velocities are the same, the translational kinetic energies must be the same. Because dumbbell (b) is also rotating, it has rotational kinetic energy in addition. Question 8.8bDumbbell II

24
Question 8.9Moment of Inertia a) a) solid aluminum b) hollow gold c) same same mass & radius solid hollow Two spheres have the same radius and equal masses. One is made of solid aluminum, and the other is made from a hollow shell of gold. Which one has the bigger moment of inertia about an axis through its center?

25
Question 8.9Moment of Inertia same mass & radius solid hollow Two spheres have the same radius and equal masses. One is made of solid aluminum, and the other is made from a hollow shell of gold. Which one has the bigger moment of inertia about an axis through its center? Moment of inertia depends on mass and distance from axis squared. It is bigger for the shell because its mass is located farther from the center. a) a) solid aluminum b) hollow gold c) same

26
Question 8.10Figure Skater a) the same b) larger because she’s rotating faster c) smaller because her rotational inertia is smaller A figure skater spins with her arms extended. When she pulls in her arms, she reduces her rotational inertia and spins faster so that her angular momentum is conserved. Compared to her initial rotational kinetic energy, her rotational kinetic energy after she pulls in her arms must be

27
Question 8.10Figure Skater a)the same b)larger because she’s rotating faster c) smaller because her rotational inertia is smaller A figure skater spins with her arms extended. When she pulls in her arms, she reduces her rotational inertia and spins faster so that her angular momentum is conserved. Compared to her initial rotational kinetic energy, her rotational kinetic energy after she pulls in her arms must be: KE rot = I 2 = L (used L = I ). Because L is conserved, larger means larger KE rot. The “extra” energy comes from the work she does on her arms. Follow-up: Where does the extra energy come from?

28
Question 8.11Two Disks Question 8.11 Two Disks a) disk 1 b) disk 2 c) not enough info Two different spinning disks have the same angular momentum, but disk 1 has more kinetic energy than disk 2. Which one has the bigger moment of inertia? L L Disk 1 Disk 2

29
Question 8.11Two Disks Two different spinning disks have the same angular momentum, but disk 1 has more kinetic energy than disk 2. Which one has the bigger moment of inertia? a) disk 1 b) disk 2 c) not enough info L L Disk 1 Disk 2 KE = I 2 = L 2 (2 I) (used L = I ). Because L is the same, bigger I means smaller KE. /

30
Question 8.12 Spinning Bicycle Wheel You are holding a spinning bicycle wheel while standing on a stationary turntable. If you suddenly flip the wheel over so that it is spinning in the opposite direction, the turntable will: a) remain stationary b) start to spin in the same direction as before flipping c) to spin in the same direction as after flipping

31
Question 8.12 Spinning Bicycle Wheel You are holding a spinning bicycle wheel while standing on a stationary turntable. If you suddenly flip the wheel over so that it is spinning in the opposite direction, the turntable will: The total angular momentum of the system is L upward, and it is conserved. So if the wheel has − L downward, you and the table must have +2L upward. a) remain stationary b) start to spin in the same direction as before flipping c) start to spin in the same direction as after flipping

32
Question 8.13Balancing Rod 1kg 1m A 1-kg ball is hung at the end of a rod 1-m long. If the system balances at a point on the rod 0.25 m from the end holding the mass, what is the mass of the rod? a) ¼ kg b) ½ kg c) 1 kg d) 2 kg e) 4 kg

33
1 kg X CM of rod same distance m ROD = 1 kg A 1-kg ball is hung at the end of a rod 1-m long. If the system balances at a point on the rod 0.25 m from the end holding the mass, what is the mass of the rod? The total torque about the pivot must be zero !! 0.25 m to the right of the pivot same distance to the left of the pivot The total torque about the pivot must be zero !! The CM of the rod is at its center, 0.25 m to the right of the pivot. Because this must balance the ball, which is the same distance to the left of the pivot, the masses must be the same !! a) ¼ kg b) ½ kg c) 1 kg d) 2 kg e) 4 kg Question 8.13Balancing Rod

34
Question 8.14Mobile 1 kg 1 m3 m 1 m2 m ? ? A (static) mobile hangs as shown below. The rods are massless and have lengths as indicated. The mass of the ball at the bottom right is 1 kg. What is the total mass of the mobile? a) 5 kg b) 6 kg c) 7 kg d) 8 kg e) 9 kg

35
1 kg 1 m3 m 1 m2 m ? ? A (static) mobile hangs as shown below. The rods are massless and have lengths as indicated. The mass of the ball at the bottom right is 1 kg. What is the total mass of the mobile? Finally, add up all the masses. Use torques in two steps: (1) find the big mass on the bottom left (lower rod only), and (2) use the entire lower rod assembly (with two masses) to find the mass on top right. Finally, add up all the masses. Question 8.14Mobile a) 5 kg b) 6 kg c) 7 kg d) 8 kg e) 9 kg

36
Question 8.15a Tipping Over I 123 a) all b) 1 only c) 2 only d) 3 only e) 2 and 3 A box is placed on a ramp in the configurations shown below. Friction prevents it from sliding. The center of mass of the box is indicated by a blue dot in each case. In which case(s) does the box tip over?

37
Question 8.15a Tipping Over I 123 a) all b) 1 only c) 2 only d) 3 only e) 2 and 3 A box is placed on a ramp in the configurations shown below. Friction prevents it from sliding. The center of mass of the box is indicated by a blue dot in each case. In which case(s) does the box tip over? If the box can rotate such that the CM is lowered, it will!! The torque due to gravity acts like all the mass of an object is concentrated at the CM. Consider the bottom right corner of the box to be a pivot point. If the box can rotate such that the CM is lowered, it will!!

38
Question 8.15bTipping Over II a) case 1 will tip b) case 2 will tip c) both will tip d) neither will tip Consider the two configurations of books shown below. Which of the following is true? 1/2 1/4 1/2 1/4 12

39
Question 8.15bTipping Over II CM of case #1 is not over the table, so it will tip The CM of the system is midway between the CM of each book. Therefore, the CM of case #1 is not over the table, so it will tip. a) case 1 will tip b) case 2 will tip c) both will tip d) neither will tip Consider the two configurations of books shown below. Which of the following is true? 1/2 1/4 1/2 1/4 12

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google