Presentation is loading. Please wait.

Presentation is loading. Please wait.

Dye-Nanochannel Composites for Solar Energy Conversion Devices Gion Calzaferri Department of Chemistry and Biochemistry, University of Bern, Switzerland.

Similar presentations


Presentation on theme: "Dye-Nanochannel Composites for Solar Energy Conversion Devices Gion Calzaferri Department of Chemistry and Biochemistry, University of Bern, Switzerland."— Presentation transcript:

1 Dye-Nanochannel Composites for Solar Energy Conversion Devices Gion Calzaferri Department of Chemistry and Biochemistry, University of Bern, Switzerland

2 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 2 Power balance of the earth ChemPhysChem, 2011, 12, 580

3 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 3 Photosynthesis

4 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri Antenna system of green plants BCls pro RC X. Hu, K. Schulten, Phys. Tod. 50 (1997) 28 4

5 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 5 Designing an artificial antenna T. Förster, Zwischenmolekulare Energiewanderung u. Fluoreszenz. Ann.Phys. 2 (1948) 55 (NatW1946) D. L. Dexter, A Theory of Sensitized Luminescence in Solids, J.Chem.Phys. 21 (1953) 836 A. S. Davydov, The Theory of Molecular Excitons. Usp.Fiz.Nauk 82 (1964) 393 (JETP 1948) l*l* ~12 l  * FRET = Förster Resonance Energy Transfer

6 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 6 Common feature of 1D channels: They have only 2 entrances ~1nm Langmuir, 2012, 28, dx.doi.org/ /la

7 ~1.84 nm ~0.71 nm Artificial antenna: Principle 7

8 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri Packing of dyes: Intermolecular interactions 8 Chem. Phys. Chem. 12 (2011) 580

9 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 30 nm – 8’000 nm 96’000 channels 600 nm organized monomers 60 nm crystal  dyes 0.71 nm 1.26 nm 9 Zeolite L is an ideal host for supramolecular organization of dyes Angew. Chem. Int. Ed. 42 (2003) 3732

10 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri Nano-bulbs – not blinking Insertion of dyes 10 Photochem. Photobiol. Sci. 7 (2008) 887

11 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 11 length  m occupation probability Artificial antenna: FRET experiments p= nm

12 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 12 A A D: A= 104:2 D:A= 52 Artificial antenna: Large donor to acceptor ratio Chem. Phys. Chem. 12 (2011) 580

13 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 13 Patents EP , US , US Angew.Chem.Int.Ed. 41 (2002) 2284 Artificial antenna: Bidirectional

14 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 14 Stopcock modification and total surface modification Photochem. Photobiol. Sci. 7 (2008) 887

15 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 1.84 nm Chem.Eur.J. 10 (2004) 5771 Artificial antenna: Injecting electronic excitation energy with a Ru 2+ complex 15

16 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 16 monodirectional antenna materials Uni-directional antenna The first antenna organized on a macroscopic scale Angew. Chem. Int. Ed. 45 (2006) 5408

17 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri Optical anisotropy of oriented monolayers Photochem. Photobiol. Sci. 7 (2008) 887

18 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri Radiance Amplification by Multi- Stage Fluorescence System W. A. Shurcliff, Polaroid Corporation J. Opt. Soc. Am. 41 (1951) 2009 Luminescent Solar Concentrators. 1: Theory Of Operation and Techniques … A.H. Zewail et al. Appl. Optics 18 (1979) 3090 Luminescent solar concentrator 18 Solar Energy Conversion with Fluorescent Collectors Goetzberger et al. Appl. Phys. 14 (1977) 123 Photon Collection Efficiency of Fluorescent Solar Collectors Tom Markvart et al. Chimia 61 (2007) 780–786 L.H. Slooff-Hoek, ECN Solar Energy, NL, 2005

19 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 19 Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment Michael G. Debije* and Paul P. C. Verbunt Adv. Energy Mater. 2012, 2, 12–35 LSC demonstration: Adv. Energy Mater. 2012, 2, 12–35

20 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri Luminescent solar concentrator: Self-absorption 20

21 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 21 Luminescent solar concentrator: Escape cone and criteria Large spectral range High transparency Low self-absorption Low escape flux High stability High flexibility Low toxicity Langmuir, 2012, 28, dx.doi.org/ /la

22 22 Summary Artificial antenna Luminescent solar concentrator: Solution of old problems PD Dr. Dominik Brühwiler Dr. Andreas Kunzmann Dr. André Devaux Prof. Dr. Ettore Fois Prof. Dr. Gloria Tabacchi Oriented monolayers Langmuir, 2012, 28, dx.doi.org/ /la


Download ppt "Dye-Nanochannel Composites for Solar Energy Conversion Devices Gion Calzaferri Department of Chemistry and Biochemistry, University of Bern, Switzerland."

Similar presentations


Ads by Google