Download presentation

Presentation is loading. Please wait.

Published byGerald Walker Modified about 1 year ago

1
Melih Papila, Assessment of Axisymmetric Piezoelectric Composite Plate Configurations for Optimum Volume Displacement Melih Papila Multidisciplinary & Structural Optimization Group Interdisciplinary Microsystems Group

2
Melih Papila, 2 Acknowledgement Guigin Wang Quentin Gallas Dr. Bhavani Sankar Dr. Mark Sheplak Dr. Lou Cattafesta SPONSOR: NASA Langley Research Center

3
Melih Papila, 3 Design Problem: Piezoelectric composite driver Synthetic Jets Sound generating/receiving devices MEMS PZT Microphone Displacement actuators Maximum volume displacement Maximum natural frequency Orifice Cavity Oscillating Piezo-Composite Diaphragm Net Flow Applications Gallas (2002)

4
Melih Papila, 4 Volume displacement Electric field (Voltage ) PZT layer expands/contracts Plate bends Lateral deflection w(r) piezoceramic shim V

5
Melih Papila, 5 Configurations Outer ring piezoceramic shim V piezoceramic shim V Inner disc Bimorph piezoceramic shim Unimorph piezoceramic shim V

6
Melih Papila, 6 Objective Investigate trade off between volume displacement and natural frequency via Pareto Optimization “BEAT THE EXISTING DESIGN” Find the optimum dimensions of the shim and piezoelectric layers in order to achieve optimum volume displacement

7
Melih Papila, 7 Outline Design problem & objective Analysis tool and verification Optimization of Circular Piezo-composite plate Design variables Objective function and Constraints Results Trade-off via Pareto Optimization: Volume displacement versus Natural Frequency Concluding Remarks

8
Melih Papila, 8 Analysis: Natural Frequency P C eq M eq analytical

9
Melih Papila, 9 Analysis: Volume displacement V P analytical

10
Melih Papila, 10 Analysis: Lateral deflection Classical lamination theory Each layer is isotropic, linear elastic, constant thickness Bonding line and electrode layer are neglected Equilibrium equations Constitutive equations including piezoelectric effect Boundary and interface matching conditions piezoceramic shim (3) (2) (1) R1R1 R2R2 R3R3 Wang et al. (2002) Prasad et al. (2002)

11
Melih Papila, 11 Analysis: Model verification Using scanning laser vibrometer V 10 mm 11.5 mm 0.20 mm 0.23 mm Gallas (2002) f nat (Hz) Test Analysis

12
Melih Papila, 12 Analysis: Model verification 17.6 mm 18.5 mm 0.12 mm 0.08 mm 16.9 mm

13
Melih Papila, 13 Outline Design problem & objective Analysis tool and verification Optimization of Circular Piezo-composite plate Design variables Objective function and Constraints Results Trade-off via Pareto Optimization: Volume displacement versus Natural Frequency Concluding Remarks

14
Melih Papila, 14 Design Variables R 1 : radius of the inner PZT layer(s) R 2 : inner radius of the outer ring PZT layer(s) t s : thickness of the shim and PZT layer(s) t p : thickness of the PZT layers (R 3 : radius of the shim – fixed) Lateral deflection of the composite plate determines volume displacement and operational frequency limit tsts R1R1 R2R2 R3R3 tptp tptp

15
Melih Papila, 15 Objective Function: Maximum Volume displacement Electric field (Voltage ) PZT layer expands/contracts Plate bends Lateral deflection w(r) Large PZT coverage Small t s

16
Melih Papila, 16 Formulation & Implementation Solved by MATLAB Optimization Toolbox tsts R1R1 R2R2 R3R3 tptp tptp

17
Melih Papila, 17 R 3 =11.5 mm, t min = mm Maximum volume displacement t min R1R1 R2R2 tptp tptp Bimorph/unimorph Amount of PZT Volume displacement

18
Melih Papila, 18 R 3 =11.5 mm Maximum volume displacement effect of lower bound, t min /0.076 Amount of PZT Volume displacement

19
Melih Papila, 19 Outline Design problem & objective Analysis tool and verification Optimization of Circular Piezo-composite plate Design variables Objective function and Constraints Results Trade-off via Pareto Optimization: Volume displacement versus Natural Frequency Concluding Remarks

20
Melih Papila, 20 Methodology: Pareto Optimization In multi-objective optimization problem with conflicting objectives Pareto optimal points: one objective cannot be improved without deterioration in one of the other objectives, Construct a Pareto hypersurface minimized maximized Objective 1 maximized Objective 2 maximized

21
Melih Papila, 21 R 3 =11.5 mm : Pareto front natural frequency versus volume displacement baseline Freq., Vol. -45%, 15% Freq., Vol. 23%, -15%

22
Melih Papila, 22 Analytical solutions allowed numerical optimization Baseline designs were beaten and substantial improvement is predicted Bimorph configuration without the outer ring offers the optimum performance Minimum gauge for the layers is a limiting factor Pareto optimization was used to understand tradeoff between Maximum volume displacement Maximum natural frequency Concluding Remarks

23
Melih Papila, 23 Prasad et al. (2002), “Two-Port Electroacoustic Model of an Axisymmetric piezoelectric Composite Plate,” 43rd AIAA Structures, Structural Dynamics and Materials Conference, Denver, CO. Wang et al. (2002), “Analysis of a composite piezoelectric circular plate with initial stresses for MEMS,” ASME International Mchanical Engineering Congress, 2002, New Orleans, LA. Gallas et al. (2003), “Optimization of Synthetic Jet Actuators,” AIAA Aerospace Sciences Meeting, 2003, Reno, NV. Relevant work THANK YOU…

24
Melih Papila, 24 R 3 =11.5 mm Maximum volume displacement effect of lower bound, t min /0.076 Amount of PZT Volume displacement

25
Melih Papila, 25 Effect of oppositely polarized outer ring R1R1 R2R2 R3R3 tptp tsts EfEf EfEf

26
Melih Papila, 26 Results: R 3 =18.5 mm Maximum volume displacement lower bound on t= mm

27
Melih Papila, 27 Linear Theory – The piezoelectric term The piezoelectric effect is added by using the following relation for generalized force resultants: Where

28
Melih Papila, 28 Piezoelectric Composite Plate Optimization Problem Objective function Maximum volume displacement Design variables Shim Structural Variables : Thickness Piezoelectric layer Variables : Radii and thickness Constraints Frequency Limit Strength Limit Variable Bounds

29
Melih Papila, 29 Configurations R1R1 R2R2 R3R3 tptp tsts EfEf EfEf V AC E fT = E f = V AC /t p positive R1R1 R2R2 tptp tptp tsts EfEf -E f EfEf V AC E fB = -E f = -V AC /t p positive E fT = E f = V AC /t p

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google