Presentation is loading. Please wait.

Presentation is loading. Please wait.

Name: Anil kumar Appapurapu College: Bapatla college of pharmacy, Bapatla. Year: M. Pharmacy, 2nd year. Profile link:

Similar presentations


Presentation on theme: "Name: Anil kumar Appapurapu College: Bapatla college of pharmacy, Bapatla. Year: M. Pharmacy, 2nd year. Profile link:"— Presentation transcript:

1 Name: Anil kumar Appapurapu College: Bapatla college of pharmacy, Bapatla. Year: M. Pharmacy, 2nd year. Profile link: http://www.pharmainfo.net/anil-kumar- appapurapu Name: Dr. T.E.G.K. Murthy, M Pharm, Ph.D. College:Bapatla College of Pharmacy Profile link: http://www.pharmainfo.net/tegkmurthy AuthorCo-author 1 BCPE03

2 The challenging scenario in the aspects of efficacy, safety, purity, and quality determination of the drug samples became optimistic. Drug 1 Natural ---animal ---- plants ----marine Synthetic ----organic ----in-organic Chemical / functional Group interaction 2 Signal transduction 1 Therapeutic effects 1 Molecular basis 2 sources 1 Importance of analysis of drugs Analysis basis Drug –receptor interaction 1 2 1.B Sue Brizuela,Ms, Judith A Hesp, MS, “Drug Information” Remington: The science and practice of pharmacy,19 th edition,volume.1, Mack publishing company Easton, Pennsylvania18042, 1995. print. 2. B.K. SHARMA," fundamental principles of spectroscopy”,spectroscopy,20th edition, Goel publications, Delhi, 2007. print.

3 Analysis Structure.breakdown ANALYSIS 1.Separation techniques 2.Spectrophotometric 3. Electro analytical 4. Titrimetric analysis chromatography Potential & conductometry Titrations 1.uv-visible 2.Infra red 3.Mass 4.Neclear magnetic resonance Classification of analytical techniques 3 3 3. Douglas A.Skoog, F.James Holler, Timothy A.Nieman,,”introduction to instrumental methods of analysis", principles of instrumental analysis, 5 th edition, saunders Golden sunburst series. Forth worth, Philadelohia, Chicago, Sydney, Toronto. Reprint. 2005. Print. 3

4 Spectroscopy [2,4,5] EMR ANALYTE SPECTROPHOTOGRAPH Conc. should be lower 1.UV-Visible radiations---excitation of electrons----uv-visiblespectrum 2.IR-radiations—vibration changes in electrons---IR spectrum 3.Microwave radiations---spin resonance----E.S.R spectrum 4.Radio frequency---spin rotational changes---N.M.R spectrum study of interaction of electromagnetic radiation with matter 4.www.answers.com. Web. 25 feb 2010. http://www.answers.com/topic/spectroscopywww.answers.comhttp://www.answers.com/topic/spectroscopy 5. www. en.wikipedia.org. Web. 25 feb 2010. en.wikipedia.orghttp://en.wikipedia.org/wiki/Infrared_spectroscopy 2. B.K. SHARMA," fundamental principles of spectroscopy”,spectroscopy,20 th edition, page noS-11, Goel publications, Delhi, 2007. print. 4 Principle of spectroscopy [2,4,5]

5 Gamma rays X rays UV Visible Infra-Red Micro waves Radio waves Violet indigo Blue Green Orange Yellow Red 370 nm 650 590 550 490 450 430 EMR Drug substance Energy Kcal/mol 9.4 x 10 7 9.4 x10 1 9.4 x10 3 9.4 x 10 -1 9.4 x 10 -3 9.4 x 10 -5 9.4 x 10 -7 Λ0AΛ0A Frequency (Hz) Absorbing radiations Type of spectroscopy 1 7 6 0 0 6 x 10 6 3 x 10 9 3 x 10 13 15 0 3 8 0 0 10 21 10 17 10 15 10 13 10 11 10 09 10 07 Emission Both E & Abs NMR Abs Absorption THE ELECTROMAGNETIC SPECTRUM Characteristics of radiations Resulting spectrum 5. www. en.wikipedia.org. Web. 25 feb 2010. en.wikipedia.orghttp://en.wikipedia.org/wiki/Infraredspectroscopy 2. B.K. SHARMA," fundamental principles of spectroscopy” Spectroscopy 20 th edition, page no.S-11- S-20, goel publications, Delhi, 2007.print. 5 [2,5]

6 IR -SPECTROSCOPY 2 Theory origin of spectra Physics 3 Principle observed changes Chemistry 2 Instrumentation working Engineering 6 Applications [2,3,6] uses pharmacy BIO-technology Genetic engineering Multidisciplinary of IR spectroscopy [2,3,6] 6 2. B.K. SHARMA," Infrared spectroscopy” Spectroscopy 20th edition, page no.S-220, goel publications, Delhi, 2007.print. 3. Douglas A.Skoog, F.James Holler, Timothy A.Nieman,,”Infrared spectroscopy", principles of instrumental analysis, 5 th edition, saunders Golden sunburst series. Forth worth, Philadelohia, Chicago, Sydney, Toronto. Page no. 406. Print. 6. Hobart H. Willard, Lynne L. Merritt. Jr., John A. Dean, Frank A. Settle, Jr. “Infrared spectroscopy”, instrumental methods of analysis,7 th edition page288,289,292,293, content no. 11.1. CBS publications, Toronto. 2005. print.

7 REGIONWAVE LENGTH λ (μm) WAVE NUMBER υ (cm -1 ) FREQUENCY RANGE Hz NEAR 0.78 - 2.512800 - 4000 3.8x10 14 -1.2x10 14 MIDDLE 2.5 - 504000 - 200 1.2x10 14 - 6x1 12 FAR 50 - 1000200 -10 6x10 12 - 30x10 11 MOST USED2.5 - 154000 - 670 1.2x10 14 -2x10 13 IR-REGION: 12,800 - 10 cm -1 1.Near IR----carbohydrates and proteins 2.Middle IR-----organic molecules—functional groups 3.Far IR—in-organic –co-ordination bonds& quaternary ammonium compounds 3. Douglas A.Skoog, F.James Holler, Timothy A.Nieman,,”Infrared spectroscopy”, introduction to instrumental methods of analysis", principles of instrumental analysis, 5 th edition, saunders Golden sunburst series. Forth worth, Philadelohia, Chicago, Sydney, Toronto. Page no. 406. Print. 6. Hobart H. Willard, Lynne L. Merritt. Jr., John A. Dean, Frank A. Settle, Jr. “Infrared spectroscopy”, instrumental methods of analysis,7 th edition page288,289,292,293, content no. 11.1. CBS publications, Toronto. 2005. print. [3,6] 7

8 REGION DetectorsSource of radiation Optical system Type of samples NEAR Photo conductance Tungsten filament lamp Prism grating Solid / liquid MIDDLE Thermal typeNernst glowers/ Nichrome wire Diffraction grating Liquid / gas FAR Golay, pyroelectric High pressure mercury lamp Double beam grating Gas MOST USED Thermal typeNernst glowers/ Nichrome wire Diffraction grating Liquid / gas Type of analysis measurement Qualitative Quantitative Diffusive reflectance Absorption Qualitative Quantitative Chromatographic Diffusive reflectance Absorption Adsorption Quantitativeemission Qualitative Quantitative Chromatographic Diffusive reflectance Absorption Adsorption INSTRUMENTAL AND APPLICATIONS OF VARIOUS IR REGIONS [7,8] 7. www. orgchem.colorado.edu. web,.25.2010. http://orgchem.colorado.edu/hndbksupport/irtutor/tutorial.html 8.Donald L.Pavia, Gary M.Lampman, George S. Kriz.”infrared spectroscopy "introduction to spectroscopy,3 rd edition, CBSPublications Thomas books Australia, U.S.print,Canada, Mexico, 2007. print.. 8

9 Due to 4 changes in energies of the molecules 1. Electronic transitions -----E t 2. Electronic rotations -------E r 3. Electronic vibrations-------E v 4. Electronic energy-----------E e total energy of the molecule= E e + E v + E r + E t energies required in the order ----- E e > E v > E r > E t Various types IR –spectra 1. Rotational spectra 2. Vibrational- rotational spectra 3. Electronic band spectra ORIGIN OF IR SPECTRUM [2,3] 2. B.K. SHARMA," Infrared spectroscopy”,spectroscopy,20 th edition, Goel publications, Delhi, 2007. print. 3. Douglas A.Skoog, F.James Holler, Timothy A.Nieman,”Infrared spectroscopy”, introduction to instrumental methods of analysis", principles of instrumental analysis, 5 th edition, saunders Golden sunburst series. Forth worth, Philadelohia, Chicago, Sydney, Toronto. Page no. 406. Print. 9

10 Differences between various types of IR spectra 2,(a,b,c) Character Electronic band spectra a Vibration- rotational spectra b Rotational spectra c 1. IR region Near IR Middle IR Far IR 2.Energy required Higher less very less 3.Dipole moment less induced Definite dipoleIntense dipole 4.Sample stateSolidsLiquids / gases Only gases 5.Thoery supportingFrank codon principle Harmonic oscillator principle Rigid rotor principle 6.Changes observedExcitation, vibration Vibration, rotationOnly rotation 7.Highly feasible for single bonds double bondsTriple bonds 2. B.K. SHARMA," Infrared spectroscopy”,spectroscopy,20 th edition, Goel publications, Delhi, 2007. print. a.S-234 to s-249 b. s-220 to s- 234 c. s-201 to s-220. 10

11 1. Selection rules 9 2. Types of vibrations 9 3. Number of possible vibrational modes 10 4. Vibrational frequency [9,10] 5. Factors influencing vibrational modes [9,10] INFRARED THEORY [9,10] Matching of Frequency Dipole moment Vibrational Quantum Number Translational motion Rotational motion Vibrational motion A. Phase and solvents used B. Coupled interactions C. Hydrogen bonding D. Fermi resonance E. Electronic effects 9. Robert M.Silverstien Francis X.Webster,”infrared spectroscopy”, spectroscopic identification of organic compounds, 6 th edition, John Wiley, Chichester, Singapore, Toronto, Brisbane page no. 3.5, 2005. Print. 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2 nd edition,Narosa,Newdelhi, Chennai 2005. Print. 11

12 Asymmetric ( nu) Symmetric ( nu) Scissoring ( s) Rocking (ρ ) Wagging (ω) Twisting (tau) Stretching vibrationsBending vibrations In-planeOut -plane 2925 2850 1465 1350 1150 720 cm -1 In-plane Types of vibrations [5,11] Vibrational energy depends on :- 1. masses of the atoms 2. strength of bonds 3. arrangement of atoms within the molecule 5. www. en.wikipedia.org. web.25 feb 2010.. en.wikipedia.orghttp://en.wikipedia.org/wiki/Infrared_spectroscopy 11. Dudles H,Williams,Ian Fleming,”infrared spectroscopy”, Spectroscopy Methods In Organic Chemistry, 5 th edition,Tata mecGrawHill.Education. Newyork, Singapore, Sydney, 2004. Print. 12 For stretching vibration = N -1 For bending vibration [(3N - 6)-(N -1)]=2N -5 for non-linear [(3N - 5)-(N -1)] =2N – 4 for linear ‘N’ is the number of atoms in the bond.

13 M1 Force constant, k M2 Ball and spring representation of 2 atom of molecule vibrating in the direction of bond Vibrational frequency 2 Factors influencing absorption frequency 2  Masses of attached atoms. As masses increase, wave number decreases.  Strength of chemical bond. As bond strength increases, wave number increases.  Hybridization. Bonds are stronger in the order sp > sp 2 > sp 3.  Resonance. Conjugation lowers the energy to vibrate bond. 2. B.K. SHARMA," Infrared spectroscopy”,spectroscopy,20 th edition, Goel publications, Delhi, 2007. print. 13

14 A. Phase and solvents used Phase and solvents may bring the changes in IR in the aspects of 1.Band frequency shifts cm -1 in vapor state -----------1718 cm -1 in liquid state 2. Band splitting e.g.;- the effect of phase and solvents in Acetone. >c=o in acetone ----------1742 cm -1 in vapor state -----------1718 cm -1 in liquid state Acetone interactions with some solvents -----------1726 cm -1 in a solution of Hexane -------------1713 cm -1 in chloroform --------------1709 cm -1 in ethanol Acetone interactions with some solvents -----------1726 cm -1 in a solution of Hexane -------------1713 cm -1 in chloroform --------------1709 cm -1 in ethanol Dipole-dipole lowers wave number Factors influencing vibrational modes [2,10,12] 2. B.K. SHARMA," Infrared spectroscopy”,spectroscopy,20 th edition, Goel publications, Delhi, 2007. print. 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2 nd edition,Narosa,Newdelhi, Chennai 2005. Print. 12.Y.R.Sharma,”infrared spectroscopy”, Elementary organic spectroscopy principles and chemical applications, first edition 1980, reprint 2007. print. 14 B. Coupled interactions Extent of coupling influenced by 1.stretching vibrations with two vibrations have common atom 2. bending vibrations with a common bond b/t vibrating groups. 3. coupled groups of identical energies. 4. groups separated by two/more bonds, little or no interaction occur. 6. vibrations of symmetrical species.

15 Factors influencing vibrational modes [2,10,12] 2. B.K. SHARMA," Infrared spectroscopy”,spectroscopy,20 th edition, Goel publications, Delhi, 2007. print. 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2 nd edition,Narosa,Newdelhi, Chennai 2005. Print. 12.Y.R.Sharma,”infrared spectroscopy”, Elementary organic spectroscopy principles and chemical applications, first edition 1980, reprint 2007. print. 15 Strength of H-bond effected by 1. ring strain 2. molecular geometry 3. relative acidity and basicity of proton donor and acceptor C.. Hydrogen bonding Types of hydrogen bonding :- 1. intermolecular hydrogen bonding extent of bonding depends on Temp. 2. intramolecular hydrogen bonding D. Fermi resonance Factors leads to Fermi resonance a) vibrational levels are same for symmetrical compounds. b) interacting groups located in the molecule for an appreciable mechanical coupling to occur. e.g.:- cm-1 the splitting caused by coupling b/t fundamental c=o stre. near 1340 cm -1 and 667 cm -1 -----1344 cm -1 1 st overtone 1. co 2 actual absorption frequencies at 1286,1388 cm-1 the splitting caused by coupling b/t fundamental c=o stre. near 1340 cm -1 and 667 cm -1 -----1344 cm -1 1 st overtone 2. lactones, lactims, lactums, aldehydes.

16 Factors influencing vibrational modes [2,10,12] 1.Inductive effect —introduction of alkyl group length 2.Mesomeric effect bond strength 3.Field effect. force constant vibrational frequency E. Electronic effects ► Lone pair of electrons ► conjugation lowers absorption ► Mesomeric effect dominate inductive effect for some time and vice versa Introduction of electronegative atoms Bond strength Force constant Vibrational frequency cm-1 HCHO----1750 cm-1 cm-1 CH 3 CHO---1745 cm-1 cm-1 CH 3 COCH 3 ---1715 cm-1 cm-1 ClCH 2 COCH 3- --1725 cm-1 cm-1 Cl 2 CHCOCH 3 ----1740 cm-1 16 2. B.K. SHARMA," Infrared spectroscopy”,spectroscopy,20 th edition, Goel publications, Delhi, 2007. print. 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2 nd edition,Narosa,Newdelhi, Chennai 2005. Print. 12.Y.R.Sharma,”infrared spectroscopy”, Elementary organic spectroscopy principles and chemical applications, first edition 1980, reprint 2007. print.

17 INSTRUMENTATION [2,6] 1.Radiation source 2. Monochromatic light. 3.Sample handling. 4.Detectros 5.Amplifiers. 2. B.K. SHARMA," Infrared spectroscopy”,spectroscopy,20 th edition, Goel publications, Delhi, 2007. print. 6. Hobart H. Willard, Lynne L. Merritt. Jr., John A. Dean, Frank A. Settle, Jr. “Infrared spectroscopy”, instrumental methods of analysis,7thedition content no. 6.18. CBS publications, Toronto. 2005. print. 17 2.Sampling of substances solids liquids gases. 1.solids run in solution form 2.solid films 3.mull technique 4.pressured pellet technique.

18 S.NOCharacterNernst glower GlobarIncandescentMercury arcTungsten lamp Co 2 laser 1.CompositionRare earth oxides Silicone carbide Nichrome wireHigh (Hg) pressure Tungsten – Halogen Tunable Co 2 laser. 2.Operating temp. 1200 — 2200K 1300 --- 1500 K 1100K1000K3500K------- 3.Radiations produced O.P cm-1 12,800- 4000cm-1 cm-1 5200 cm-1 cm-1 10,800-- 8000cm-1 cm-1 < 665 cm-1 cm-1 10,100—4000 cm-1 cm-1 1100- 900cm-1 4.IR region usedNear / visible Middle Near Far MiddleMiddle /near 5.Intensity of radiation More intenseAs equal to Nernst Less but longer life. Greater MildMore effective 6.Out put significant (λ) >2µm >5µm 2-4µm 10µm 2-4µm 5 µm 7.Used forCarbohydrate, protein Simple Functional groups complex organic molecules. In- organic complexes. Most organic functional groups NH 3 C 6 H 6, C 2 H 5 OH INFRARED SOURCES [3,6] 3.Douglas A.Skoog, F.James Holler, Timothy A.Nieman,,”Infrared spectroscopy", principles of instrumental analysis, 5 th edition, saunders Golden sunburst series. Forth worth, Philadelohia, Chicago, Sydney, Toronto. Page no. 406. Print. 6. Hobart H. Willard, Lynne L. Merritt. Jr., John A. Dean, Frank A. Settle, Jr. “Infrared spectroscopy”, instrumental methods of analysis,7 th edition page288,289,292,293, content no. 11.1. CBS publications, Toronto. 2005. print. 18

19 S.No Character Thermocouple or Thermopile Thermister or Bolometer Pyroelectric Golay or Pneumatic 1.PrinciplePelletier effectWhetstone bridgeElectric polarization Expanction of gases 2.Materials usedBismuth & Antimony, coated by metal oxides Sintered oxides of Mn, co, Ni TGS, DTGS, LiTGO 3, LiTubO 3 generally CO 2 3.Material should beThermally activeThermally sensitive resistors Non-center symmetric crystal Inert nature 4.DescriptionHalf -junction- hot Alternate -junction -cold --------------------------Metal cylinder closed in b/t metal plate & Ag 5.Conversion unitRadiant to Electric signal ---measured Change in resistance - Q Thermal alteration to E.polarization Expanction of gas to pressure to e.signal 6.UsedPhotocuastic spectroscopy Diffusive reflectance FTIRNon –dispersive IR 7.Response time 30 sec4 sec multiple scanning0.01sec DETECTORS or TRANSDUCERS [3,6] 3.Douglas A.Skoog, F.James Holler, Timothy A.Nieman, “ Infrared spectroscopy”, introduction to instrumental methods of analysis, principles of instrumental analysis, 5 th edition, saunders Golden sunburst series. Forth worth, Philadelohia, Chicago, Sydney, Toronto. Page no. 408-410. 2006 Print. 6. Hobart H. Willard, Lynne L. Merritt. Jr., John A. Dean, Frank A. Settle, Jr. “Infrared spectroscopy”, instrumental methods of analysis,7 th edition page288,289,292,293, content no. 11.1. CBS publications, Toronto. 2005. print. 19

20 ► 3600—3000cm -1  C-H. ---OH, --NH 2, >NH,  C-H. ► 3200—3000cm -1  C-H, Ar— C-H. ►3000—2500 cm -1 --C—H of methyl/methelene asymmetric stre. --C—H, --COOH ►2300—2100 cm -1 Alkynes 2210---2100 Cyanides 2260—2200 Isocyanides 2280—2250 ►1900—1650 cm -1 strong bands--- >c=o---1725—1760 anhydrides ----- 1850---1740 Imides ------ two broad band at 1700 Functional [11,13] group region 11.Dudles H,Williams,Ian Flemming,”infrared spectroscopy”, Spectroscopy Methods In Organic Chemistry, 5 th edition,Tata mecGrawHill.Education. Newyork, Singapore, Sydney, page no. 45-60. 2004. Print. 13.Harold F.Walton,Jorge Reyes, "infrared spectroscopy", Modern Chemical Analysis And Instrumentation,IMBD, Mumbai, Reprint 2001page no 201-203. Print. 20 General guidelines for IR [11,13]

21 ► 1650--1000cm -1 confirms --- esters, alcohol, ethers. Nitro ► 1000—800 cm -1 C— Cl, C-Br ► 800—710cm -1 meta substituted benzene ► 770—730cm -1 strong mono substituted benzene. ► 710—665cm -1 ortho, Para, benzene. Finger print region [11,13] 11.Dudles H,Williams,Ian Flemming,”infrared spectroscopy”, Spectroscopy Methods In Organic Chemistry, 5 th edition,Tata mecGrawHill.Education. Newyork, Singapore, Sydney, page no. 45-60. 2004. Print. 13.Harold F.Walton,Jorge Reyes, "infrared spectroscopy", Modern Chemical Analysis And Instrumentation,IMBD, Mumbai, Reprint 2001page no 201-203. Print. 21 General guidelines for IR interpretation [11,13]

22 O—H N—H C—H C—C HO-C=O C=_N C=O C=N C=C C=S N=O S=O C—N C—O benzene %T Graphical interpretation of functional groups in IR [2,10] 22 2. B.K. SHARMA," Infrared spectroscopy”,spectroscopy,20 th edition, Goel publications, Delhi, 2007. print. 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2 nd edition,Narosa,Newdelhi, Chennai 2005. Print.  C-H OH, --NH 2, >NH,  C-H  C-H, Ar— C-H C—H, --COOH esters, alcohol, ethers, Nitro groups

23 Alkanes  C–H stretch from 3000–2850 cm -1  C–H bend or scissoring from 1470-1450 cm -1  C–H rock, methyl from 1370-1350 cm -1  C–H rock, methyl, seen only in long chain alkanes, from 725-720 cm -1 Wave number cm -1 90 0 C-H stretch 2971 2963 4000 2000 1000 500 1470 728 1383 C-H rock C-H scissoring Long chain CH 2 stretch Octane spectrum 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2ndedition,Narosa,Newdelhi, Chennai 2005. Print. 11.Dudles H,Williams,Ian Flemming,”infrared spectroscopy”, Spectroscopy Methods In Organic Chemistry, 5 th edition,Tata mecGrawHill.Education. Newyork, Singapore, Sydney, page no. 45-60. 2004. Print. 23 General guidelines for IR interpretation [10,11]

24 Alkenes :-  C=C stretch from 1680-1640 cm -1  =C–H stretch from 3100-3000 cm -1  =C–H bend from 1000-650 cm -1 90 % transmittance Wave number cm -1 1 4 5 23 6 7 1.3083- =C-H stretch 2.2966- C-H stretch 3.2863 –C-H stretch 4.1644- C=C str 5.1455 C-H sis 6.1378 C-H rock 7.1004 =C-H bond 1- Octene spectrum 4000 2000 1000 500 24 General guidelines for IR interpretation [1011] 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2ndedition,Narosa,Newdelhi, Chennai 2005. Print. 11.Dudles H,Williams,Ian Flemming,”infrared spectroscopy”, Spectroscopy Methods In Organic Chemistry, 5 th edition,Tata mecGrawHill.Education. Newyork, Singapore, Sydney, page no. 45-60. 2004. Print.

25 Alkynes :-  –C≡C– stretch from 2260-2100 cm -1  –C≡C–H: C–H stretch from 3330-3270 cm -1  –C≡C–H: C–H bend from 700-610 cm -1 90 0 C-H stretch 3324 2971 4000 2000 1000 500 1470 636 1383 C-H rock C-H scissoring C  C- H C  C- H C  C- C  C- 2126 2679 1- hexyne spectrum % transmittance Wavelength cm -1 25 General guidelines for IR interpretation [10,11] 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2ndedition,Narosa,Newdelhi, Chennai 2005. Print. 11.Dudles H,Williams,Ian Flemming,”infrared spectroscopy”, Spectroscopy Methods In Organic Chemistry, 5 th edition,Tata mecGrawHill.Education. Newyork, Singapore, Sydney, page no. 45-60. 2004. Print.

26 Alkyl halides :-  C–H wag (-CH2X) from 1300-1150 cm -1  C–X stretches (general) from 850-515 cm -1  C– Cl stretch 850-550 cm -1  C–Br stretch 690-515 cm -1 90 0 C-H stretch 2976 2940 4000 2000 1000 500 1470 651 1291 C-H wag C-H scissoring Long chain, C-Br stretch 1- bromo propane spectrum 26 General guidelines for IR interpretation [10,11] 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2ndedition,Narosa,Newdelhi, Chennai 2005. Print. 11.Dudles H,Williams,Ian Flemming,”infrared spectroscopy”, Spectroscopy Methods In Organic Chemistry, 5 th edition,Tata mecGrawHill.Education. Newyork, Singapore, Sydney, page no. 45-60. 2004. Print.

27 Aromatics:-  C–H stretch from 3100-3000 cm -1  overtones, weak, from 2000-1665 cm -1  C–C stretch (in-ring) from 1600-1585 cm -1  C–C stretch (in-ring) from 1500-1400 cm -1  C–H "loop" from 900-675 cm -1 C-H stretch aromatics 3068 % transmittance 90 0 C-H stretch alkyl 2925 1614 1505 C- H stretch In aromatic ring Wavelength cm -1 1465 3032 3099 overtones 738 1035 1086 In-plane C-H bending  Aromatic C-H stretches are left to 3000, and aliphatic C-H stretches are right to 3000 Spectrum of Toluene 27 General guidelines for IR interpretation [10,11] 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2ndedition,Narosa,Newdelhi, Chennai 2005. Print. 11.Dudles H,Williams,Ian Flemming,”infrared spectroscopy”, Spectroscopy Methods In Organic Chemistry, 5 th edition,Tata mecGrawHill.Education. Newyork, Singapore, Sydney, page no. 45-60. 2004. Print.

28 Alcohol:-  O–H stretch, hydrogen bonded 3500-3200 cm -1  C–O stretch 1260-1050 cm -1 (s)  The spectrum of ethanol is shown below. Note the very broad, strong band of the O–H stretch (3391) and the C–O stretches (1102, 1055). O-H stretch 3391 Wave number cm -1 % transmittance 90 0 C-H stretch 2961 1102 1105 C-O stretch Spectrum of Ethanol 28 General guidelines for IR interpretation [10,11] 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2ndedition,Narosa,Newdelhi, Chennai 2005. Print. 11.Dudles H,Williams,Ian Flemming,”infrared spectroscopy”, Spectroscopy Methods In Organic Chemistry, 5 th edition,Tata mecGrawHill.Education. Newyork, Singapore, Sydney, page no. 45-60. 2004. Print.

29 ketones  C=O stretch:  aliphatic ketones 1715 cm -1  α, β-unsaturated ketones 1685-1666 cm -1  The spectrum of 2-butanone is shown below. This is a saturated ketone, and the C=O band appears at 1715. Note the C–H stretches (around 2991) of alkyl groups. C-H stretch 2991 1715 C=O stretch Wave number cm -1 % transmittance 90 0 2-butanone spectrum 4000 3000 2000 1500 1000 500 29 General guidelines for IR interpretation [10,11] 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2ndedition,Narosa,Newdelhi, Chennai 2005. Print. 11.Dudles H,Williams,Ian Flemming,”infrared spectroscopy”, Spectroscopy Methods In Organic Chemistry, 5 th edition,Tata mecGrawHill.Education. Newyork, Singapore, Sydney, page no. 45-60. 2004. Print.

30 Aldehydes:  H–C=O stretch 2830-2695 cm -1  C=O stretch:  aliphatic Aldehydes 1740-1720 cm -1  alpha, beta-unsaturated aldehydes 1710-1685 cm -1  The spectra of benzaldehyde and butyraldehyde are shown below. Note that the O=C stretch of the alpha, beta-unsaturated compound -- benzaldehyde -- is at a lower wave number than that of the saturated butyraldehyde. C-H Stretch alkyl 3073 1696 C=O stretch Wave number cm -1 % transmittance 90 0 2827 2725 C-H aldehyde Benzaldehyde spectrum 4000 3000 2000 1500 1000 500 30 General guidelines for IR interpretation [10,11] 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2ndedition,Narosa,Newdelhi, Chennai 2005. Print. 11.Dudles H,Williams,Ian Flemming,”infrared spectroscopy”, Spectroscopy Methods In Organic Chemistry, 5 th edition,Tata mecGrawHill.Education. Newyork, Singapore, Sydney, page no. 45-60. 2004. Print.

31 Carboxylic acids :-  O–H stretch from 3300-2500 cm- -1  C=O stretch from 1760-1690 cm -1  C–O stretch from 1320-1210 cm -1  O–H bend from 1440-1395 and 950-910 cm -1  The spectrum of hexanoic acid is shown below. Note the broad peak due to O–H stretch superimposed on the sharp band due to C–H stretch. Note the C=O stretch (1721), C–O stretch (1296), O–H bends (1419, 948), and C–O stretch (1296 O-H stretch and C-H stretch 2971 1721 C=O stretch Wave number cm -1 % transmittance 90 0 1419 O-H band 1296 C-O stretch 948 O-H 31 General guidelines for IR interpretation [10,11] 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2ndedition,Narosa,Newdelhi, Chennai 2005. Print. 11.Dudles H,Williams,Ian Flemming,”infrared spectroscopy”, Spectroscopy Methods In Organic Chemistry, 5 th edition,Tata mecGrawHill.Education. Newyork, Singapore, Sydney, page no. 45-60. 2004. Print.

32 Esters :-  C=O stretch  aliphatic from 1750-1735 cm -1  α, β-unsaturated from 1730-1715 cm -1  C–O stretch from 1300-1000 cm -1  The spectra of ethyl acetate and ethyl benzoate are shown below. Note that the C=O stretch of ethyl acetate (1752) is at a higher wavelength than that of the α, β-unsaturated ester ethyl benzoate (1726). Also note the C–O stretches in the region 1300-1000 cm -1. 90 % transmittance Wave number cm -1 4000 3000 2000 1000 500 1 2 3 1 234 Ethyl acetate 1.2981- C-H stretch 2.1752- C=O ester stretch 3.1250- C-O stretch 4.1055- C-O stretch 4 Ethyl benzoate 1.3078- C-H aromatic stretch 2.2966- C-H alkyl stretch 3.1726-C=O stretch 4.1266, 1117- C-O stretch 32 General guidelines for IR interpretation [10,11] 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2ndedition,Narosa,Newdelhi, Chennai 2005. Print. 11.Dudles H,Williams,Ian Flemming,”infrared spectroscopy”, Spectroscopy Methods In Organic Chemistry, 5 th edition,Tata mecGrawHill.Education. Newyork, Singapore, Sydney, page no. 45-60. 2004. Print.

33 Amines :-  N–H stretch 3400-3250 cm -1  1° amine: two bands from 3400-3300 and 3330-3250 cm -1  2° amine: one band from 3350-3310 cm -1  3° amine: no bands in this region  N–H bend (primary amines only) from 1650-1580 cm -1  C–N stretch (aromatic amines) from 1335-1250 cm -1  C–N stretch (aliphatic amines) from 1250–1020 cm -1  N–H wag (primary and secondary amines only) from 910-665 cm -1 33 General guidelines for IR interpretation [10,11] 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2ndedition,Narosa,Newdelhi, Chennai 2005. Print. 11.Dudles H,Williams,Ian Flemming,”infrared spectroscopy”, Spectroscopy Methods In Organic Chemistry, 5 th edition,Tata mecGrawHill.Education. Newyork, Singapore, Sydney, page no. 45-60. 2004. Print.

34 90 % transmittance Wave number cm -1 4000 3000 2000 1000 500 Aniline 1.3442 2. 3360- 3. Shoulder band 4. 1619- N-H primary amine 5.1281- C-N stretch Diethyl amine 1. 3288- N-H stretch Secondary amine 2.1143- C-N stretching 3.733- N-H waging 1 0,2 0. 1 45 2 3 1 2 3 1 Tri ethyl amine 1. 1241- C-N stretching 1 0,2 0,3 0 amine spectrums 34 General guidelines for IR interpretation [10,11] 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2ndedition,Narosa,Newdelhi, Chennai 2005. Print. 11.Dudles H,Williams,Ian Flemming,”infrared spectroscopy”, Spectroscopy Methods In Organic Chemistry, 5 th edition,Tata mecGrawHill.Education. Newyork, Singapore, Sydney, page no. 45-60. 2004. Print.

35 Nitro groups:-  N–O asymmetric stretch from 1550-1475 cm -1  N–O symmetric stretch from 1360-1290 cm -1 N-O stretch 15731383 N-O stretch Wave number cm -1 % transmittance 90 0 N-O stretch 1537 1358 Black spectrum Blue spectrum Nitro methane Meta nitro toluene 35 General guidelines for IR interpretation [10,11] 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2ndedition,Narosa,Newdelhi, Chennai 2005. Print. 11.Dudles H,Williams,Ian Flemming,”infrared spectroscopy”, Spectroscopy Methods In Organic Chemistry, 5 th edition,Tata mecGrawHill.Education. Newyork, Singapore, Sydney, page no. 45-60. 2004. Print.

36 Example for interpretation of IR for known structure [9,10,14] Acetaminophen 14 (4-acetamido-Phenol) A.N-H Amide----3360 cm -1. B.Phenolic—OH -- 3000 cm -1 --3500 cm -1 C.C—H Stretching---3000 cm -1. D.Aromatic overtone ----1840 cm -1 --1940 cm -1 E.>C=O Amide stretching -----1650 cm -1 F.Aromatic C=C stretching--- 1608 cm -1. G.N-H Amide bending ----1568 cm -1 H.Aromatic C=C stretching ----1510 cm -1. I.>C—H bending --------810 cm -1 A B C D E F G H I 9. Robert M.Silverstien Francis X.Webster,”infrared spectroscopy”, spectroscopic identification of organic compounds, 6thedition, John Wiley, Chichester, Singapore, Toronto, Brisbane page no. 3.5, 2005. Print. 10. Jag Mohan,”infrared spectroscopy”, Organic Spectroscopy, Principles And Applications, 2ndedition,Narosa,Newdelhi, Chennai 2005. Print. 14.David watson,”infrared spectroscopy”, pharmaceutical Analysis, A test book for pharmacy students & pharmaceutical chemists, 2 nd edition, Elsevier churchil,livingston. Edinburgh,london,newyork,oxford,sydney, and Toronto. Print 36

37 15.www.cem.msu.edu. Web feb 25 2010. www.cem.msu.eduhttp://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/InfraRed/irspec1.htm#ir1 15 37 Examples for interpretation of IR for known structure 15 15

38 Tips for interpretation of IR for unknown structure 14  Always place relines to negative information evidence i.e., absence of band at 1900 cm -1 ---1600 cm -1 ----absence of >C=O, >CHO  Always starts from higher frequency end of the spectrum.  Absence of band at 880 cm -1 —650 cm -1 indicates absence of aromatic ring.  For easy identification go for fingerprint and functional group region.  Finger print region range is 1400 cm -1 --900 cm -1. In this region if absorbance band is present the groups esters, alcohols, ethers, nitro are Confirmed.  Functional region range is 4000 cm -1 ---1400 cm -1.amines, alcohols, aromatic rings, carboxylic acids, alkynes, alkanes, alkenes, anhydrides, imides, etc, may be confirmed.  Stretching vibrations at 4000 cm -1 ----600 cm -1.  Bending vibrations at 1500 cm -1 -----500 cm -1. 38 14.David watson,”infrared spectroscopy”, pharmaceutical Analysis, A test book for pharmacy students & pharmaceutical chemists, 2 nd edition, Elsevier churchil,livingston. Edinburgh,london,newyork,oxford,sydney, and Toronto. Print

39 Sat’d C=0 C=C CH 3 CH 2 Aromatic P- Disubst Aromatic P- Disubst Carbonyl Group Carbon Oxygen Group Primary Amine Group Saturated Alkane Unsaturated Alkene / Aromatic Methyl Group Wave number cm -1 % transmittance 90 0 4000 3000 2000 1500 1000 500 NH 2 Unsat’d 39 Example for interpretation of IR for unknown structure [14,15] 15.www.cem.msu.edu. Web feb 25 2010. www.cem.msu.eduhttp://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/InfraRed/irspec1.htm#ir1 14.David watson,”infrared spectroscopy”, pharmaceutical Analysis, A test book for pharmacy students & pharmaceutical chemists, 2 nd edition, Elsevier churchil,livingston. Edinburgh,london,newyork,oxford,sydney, and Toronto. Print

40 3350 -- OH stetching vibrational frequency 2950 -- CH aliphatic asymmetrical stretching vibrational band. The less intense band at 2860 – is the symmetrical stretching vibrational band. 1425 -- CH2 characteristic absorption 1065 -- CO absorption 40 Example for interpretation of IR for unknown structure 15 15.www.cem.msu.edu. Web feb 25 2010. www.cem.msu.eduhttp://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/InfraRed/irspec1.htm#ir1 POSITIONREDUCED MASS BOND STRENGTH (STIFFNESS) LIGHT ATOMS HIGH FREQUENCY STRONG BONDS HIGH FREQUENCY STRENGTHCHANGE IN ‘POLARITY’ STRONGLY POLAR BONDS GIVE INTENSE BANDS WIDTHHYDROGEN BONDING STRONG HYDROGEN BONDING GIVES BROAD BANDS Peak status Reason inference

41 Conclusion IR spectroscopy Drug discovery Drug Quality control Drug incompatibility On considering the all above aspects of “INFRA RED SPECTROSCOPY”. It is concluded that IR technique is “ an unbound spectroscopic technique for quality optimization from drug discovery to drug quality control parameters”. 41

42 THANK YOU 42 NOTE: This presentation does not include plagiarized material.


Download ppt "Name: Anil kumar Appapurapu College: Bapatla college of pharmacy, Bapatla. Year: M. Pharmacy, 2nd year. Profile link:"

Similar presentations


Ads by Google