Presentation is loading. Please wait.

Presentation is loading. Please wait.

9.2 Section Objectives – page 225 Relate the structure of chloroplasts to the events in photosynthesis. Section Objectives: Describe light-dependent reactions.

Similar presentations


Presentation on theme: "9.2 Section Objectives – page 225 Relate the structure of chloroplasts to the events in photosynthesis. Section Objectives: Describe light-dependent reactions."— Presentation transcript:

1

2 9.2 Section Objectives – page 225 Relate the structure of chloroplasts to the events in photosynthesis. Section Objectives: Describe light-dependent reactions. Explain the reactions and products of the light-independent Calvin cycle.

3 Section 9.2 Summary – pages Trapping Energy from Sunlight The process that uses the sun’s energy to make simple sugars is called photosynthesis.

4 1.The light-dependent reactions convert light energy into chemical energy. Section 9.2 Summary – pages Photosynthesis happens in two phases. 2. The molecules of ATP produced in the light- dependent reactions are then used to fuel the light-independent reactions that produce simple sugars. The general equation for photosynthesis is written as 6CO 2 + 6H 2 O→C 6 H 12 O 6 + 6O 2 Trapping Energy from Sunlight

5 Section 9.2 Summary – pages Click image to view movie. Trapping Energy from Sunlight

6 Section 9.2 Summary – pages The chloroplast and pigments To trap the energy in the sun’s light, the thylakoid membranes contain pigments, molecules that absorb specific wavelengths of sunlight. Although a photosystem contains several kinds of pigments, the most common is chlorophyll. Chlorophyll absorbs most wavelengths of light except green.

7 Section 9.2 Summary – pages Light-Dependent Reactions As sunlight strikes the chlorophyll molecules in a photosystem of the thylakoid membrane, the energy in the light is transferred to electrons. These highly energized, or excited, electrons are passed from chlorophyll to an electron transport chain, a series of proteins embedded in the thylakoid membrane.

8 Section 9.2 Summary – pages Light-Dependent Reactions Sun Chlorophyll passes energy down through the electron transport chain. for the use in light-independent reactions bonds P to ADP forming ATP oxygen released splits H 2 O H+H+ NADP + NADPH Light energy transfers to chlorophyll. Energized electrons provide energy that At each step along the transport chain, the electrons lose energy.

9 Section 9.2 Summary – pages This “lost” energy can be used to form ATP from ADP, or to pump hydrogen ions into the center of the thylakoid disc. Electrons are re-energized in a second photosystem and passed down a second electron transport chain. Light-Dependent Reactions

10 Section 9.2 Summary – pages The electrons are transferred to the stroma of the chloroplast. To do this, an electron carrier molecule called NADP is used. NADP can combine with two excited electrons and a hydrogen ion (H + ) to become NADPH. NADPH will play an important role in the light-independent reactions. Light-Dependent Reactions

11 Section 9.2 Summary – pages Restoring electrons To replace the lost electrons, molecules of water are split in the first photosystem. This reaction is called photolysis. Sun Chlorophyll 2e - H2OH2O O 2 + 2H + 1 _ 2 H 2 O     2 _ 1 O 2 + 2e -

12 Section 9.2 Summary – pages The oxygen produced by photolysis is released into the air and supplies the oxygen we breathe. The electrons are returned to chlorophyll. The hydrogen ions are pumped into the thylakoid, where they accumulate in high concentration. Restoring electrons

13 Section 9.2 Summary – pages (CO2) The Calvin Cycle (CO 2 ) (Unstable intermediate) ATP ADP + (Sugars and other carbohydrates) NADPH NADP + (PGAL) ATP (PGAL) (RuPB)

14 Section 9.2 Summary – pages Carbon fixation The carbon atom from CO 2 bonds with a five-carbon sugar called ribulose biphosphate (RuBP) to form an unstable six- carbon sugar. (CO 2 ) (RuBP) The stroma in chloroplasts hosts the Calvin cycle. The Calvin Cycle

15 Section 9.2 Summary – pages Formation of 3- carbon molecules The six-carbon sugar formed in Step A immediately splits to form two three-carbon molecules. (Unstable intermediate) The Calvin Cycle

16 Section 9.2 Summary – pages The Calvin Cycle Use of ATP and NADPH A series of reactions involving ATP and NADPH from the light- dependent reactions converts the three-carbon molecules into phosphoglyceraldehyde (PGAL), three-carbon sugars with higher energy bonds. ATP NADPH NADP+ (PGAL) ADP +

17 Section 9.2 Summary – pages Sugar production One out of every six molecules of PGAL is transferred to the cytoplasm and used in the synthesis of sugars and other carbohydrates. After three rounds of the cycle, six molecules of PGAL are produced. (PGAL) (Sugars and other carbohydrates) The Calvin Cycle

18 Section 9.2 Summary – pages RuBP is replenished Five molecules of PGAL, each with three carbon atoms, produce three molecules of the five-carbon RuBP. This replenishes the RuBP that was used up, and the cycle can continue. P ADP+ ATP (PGAL) The Calvin Cycle

19 Section 2 Check The process that uses the sun’s energy to make simple sugars is ________. Question 1 D. photolysis C. photosynthesis B. glycolysis A. cellular respiration

20 Section 2 Check The answer is C. Photosynthesis happens in two phases to make simple sugars and convert the sugars into complex carbohydrates for energy storage.

21 Section 2 Check The function accomplished by the light- dependent reactions is ________. Question 2 D. conversion of sugar to PGAL C. carbon fixation B. sugar production A. energy storage

22 Section 2 Check The answer is A. The light-dependent reactions transfer energy from the sun to chlorophyll, and pass energized electrons to proteins embedded in the thylakoid membrane for storage in ATP and NADPH molecules. Sun Chlorophyll passes energy down through the electron transport chain. for the use in light-independent reactions bonds P to ADP forming ATP oxygen released splits H 2 O H+H+ NADP + NADPH Light energy transfers to chlorophyll. Energized electrons provide energy that

23 Section 2 Check The first step in the Calvin cycle is the ________. Question 3 D. Bonding of carbon to ribulose biphosphate C. Splitting of six-carbon sugar into two three-carbon molecules B. production of phosphoglyceraldehyde A. replenishing of ribulose biphosphate

24 Section 2 Check The answer is D. The carbon atom from CO 2 bonds with a five-carbon sugar to form an unstable six-carbon sugar. This molecule then splits to form two three-carbon molecules.

25 Section 2 Check How many rounds of the Calvin cycle must occur in order for one molecule of PGAL to be transferred to the cell’s cytoplasm? Question 4 D. 4 C. 3 B. 2 A. 1

26 Section 2 Check The answer is C. Each round of the Calvin cycle produces two molecules of PGAL.

27


Download ppt "9.2 Section Objectives – page 225 Relate the structure of chloroplasts to the events in photosynthesis. Section Objectives: Describe light-dependent reactions."

Similar presentations


Ads by Google