Download presentation

Presentation is loading. Please wait.

Published byMelvin Frisbee Modified over 2 years ago

1
Angular Momenta, Geometric Phases, and Spin-Orbit Interactions of Light and Electron Waves Konstantin Y. Bliokh Advanced Science Institute, RIKEN, Wako-shi, Saitama, Japan In collaboration with: Y. Gorodetski, A. Niv, E. Hasman (Israel); M. Alonso (USA), E. Ostrovskaya (Australia), A. Aiello (Germany), M. R. Dennis (UK), F. Nori (Japan)

2
Basic concepts: Angular momenta, Berry phase, Spin- orbit interactions, Hall effects Theory of photon AM Application to Bessel beams Electron vortex beams Theory of electron AM

3
Angular momentum of light 2. Extrinsic orbital AM (trajectory) kckckckc rcrcrcrc 3. Intrinsic orbital AM (vortex) 1. Intrinsic spin AM (polarization)

4
Different mechanical action of the SAM and OAM on small particles: O’Neil et al., PRL 2002; Garces-Chavez et al., PRL 2003 spinning motion orbital motion Angular momentum: Spin and orbital

5
Geometric phase2D: AM-rotation coupling: Coriolis / angular-Doppler effect3D:

6
Φ C Geometric phase dynamics, S : Berry connection, curvature (parallel transport) geometry, E :

7
Rytov, 1938; Vladimirskiy, 1941; Ross, 1984; Tomita, Chiao, Wu, PRL 1986 2222 Spin-orbit Lagrangian and phase SOI Lagrangian from Maxwell equations Bliokh, 2008 for Dirac equation Berry phase:

8
Liberman & Zeldovich, PRA 1992; Bliokh & Bliokh, PLA 2004, PRE 2004; Onoda, Murakami, Nagaosa, PRL 2004 ray equations (equations of motion) + 2222 Spin-Hall effect of light

9
Berry phase Spin-Hall effect Anisotropy Bliokh et al., Nature Photon. 2008 Spin-Hall effect of light

10
Fedorov, 1955; Imbert, 1972; …… Onoda et al., PRL 2004; Bliokh & Bliokh, PRL 2006; Hosten & Kwiat, Science 2008 Imbert Fedorov transverse shift Spin-Hall effect of light

11
geometry, phase: dynamics, AM: Spin-Hall effect of light

12
Remarkably, the beam shift and accuracy of measurements can be enormously increased using the method of quantum weak measurements: Angstrom accuracy! Spin-Hall effect of light

13
Orbit-orbit interaction and phase Φ C OOI Lagrangian 2222 Bliokh, PRL 2006; Alexeyev, Yavorsky, JOA 2006; Segev et al., PRL 1992; Kataevskaya, Kundikova, 1995 Berry phase

14
Orbital-Hall effect of light vortex-depndent shifts and orbit-orbit interaction 01 2 –1–1–1–1 –2–2–2–2 Bliokh, PRL 2006 Fedoseyev, Opt. Commun. 2001; Dasgupta & Gupta, Opt. Commun. 2006

15
Basic concepts: Angular momenta, Berry phase, Spin- orbit interactions, Hall effects Theory of photon AM Application to Bessel beams Electron vortex beams Theory of electron AM

16
Angular momentum of light total AM = OAM +SAM? z -components and paraxial eigenmodes: - polarization, l - vortex

17
“the separation of the total AM into orbital and spin parts has restricted physical meaning.... States with definite values of OAM and SAM do not satisfy the condition of transversality in the general case.” A. I. Akhiezer, V. B. Berestetskii, “Quantum Electrodynamics” (1965) transversality constraint: 3D 2D Nonparaxial problem 1 though

18
“in the general nonparaxial case there is no separation into ℓ -dependent orbital and -dependent spin part of AM” S. M. Barnett, L. Allen, Opt. Commun. (1994) Nonparaxial problem 2 nonparaxial vortex spin-to-orbital AM conversion?.. Y. Zhao et al., PRL (2007) though

19
Spin-dependent OAM and position signify the spin-orbit interaction (SOI) of light : (i) spin-to-orbital AM conversion, (ii) spin Hall effect. spin-dependent position M.H.L. Pryce, PRSLA (1948), etc. Modified AM and position operators projected SAM and OAM cf. S.J. van Enk, G. Nienhuis, JMO (1994) compatible with transversality:

20
Modified AM and position operators Modified operators exhibit non-canonical commutation relations: But they correspond to observable values and are transformed as vectors: cf. S.J. van Enk, G. Nienhuis (1994); I. Bialynicki-Birula, Z. Bialynicka-Birula (1987), B.-S. Skagerstam (1992), A. Berard, H. Mohrbach (2006)

21
Helicity representation 3D 2D reduction and diagonalization: all operators become diagonal ! cf. I. Bialynicki-Birula, Z. Bialynicka-Birula (1987), B.-S. Skagerstam (1992), A. Berard, H. Mohrbach (2006) Berry connection

22
Basic concepts: Angular momenta, Berry phase, Spin- orbit interactions, Hall effects Theory of photon AM Application to Bessel beams Electron vortex beams Theory of electron AM

23
Bessel beams in free space mean values field Berry phase The spin-to-orbit AM conversion in nonparaxial fields originates from the Berry phase associated with the azimuthal distribution of partial waves. SAM and OAM for Bessel beam

24
Quantization of caustics quantized GO caustic: fine SOI splitting ! spin-dependent intensity

25
Plasmonic experiment Y. Gorodetski et al., PRL (2008) circular plasmonic lens generates Bessel modes

26
Spin and orbital Hall effects orbital and spin Hall effects of light azimuthally truncated field (symmetry breaking along x ) B. Zel’dovich et al. (1994), K.Y. Bliokh et al. (2008)

27
Plasmonic experiment K. Y. Bliokh et al., PRL (2008) Plasmonic half-lens produces spin Hall effect:

28
Basic concepts: Angular momenta, Berry phase, Spin- orbit interactions, Hall effects Theory of photon AM Application to Bessel beams Electron vortex beams Theory of electron AM

29
Angular momentum of electron 2. Extrinsic orbital AM kckckckc rcrcrcrc 1. Spin AMkk ‘non-relativistic’ 3. Intrinsic orbital AM ? ‘relativistic’

30
Scalar electron vortex beams

33
Murakami, Nagaosa, Zhang, Science 2003 equations of motion Orbital-Hall effect for electrons Bliokh et al., PRL 2007

34
Scalar electron vortex beams

37
Basic concepts: Angular momenta, Berry phase, Spin- orbit interactions, Hall effects Theory of photon AM Application to Bessel beams Electron vortex beams Theory of electron AM

38
Bessel beams for Dirac electron plane wave polarization bi-spinor Dirac equation: E > 0E > 0 E < 0E < 0 cross- terms cross- terms spinor in the rest frame

39
Bessel beams for Dirac electron spin-dependent intensity SOI strength spectrum Bliokh, Dennis, Nori, arXiv:1105.0331

40
Angular momentum Foldy-Wouthhuysen transformation projector onto E>0 subspace E > 0E > 0 E < 0E < 0 cross- terms cross- terms OAM and SAM for Bessel beams Bliokh, Dennis, Nori, arXiv:1105.0331

41
Magnetic moment for Dirac electron magnetic moment from current operator ! final result slightly differs from Gosselin et al. (2008); Chuu, Chang, Niu, (2010)

42
Spin and orbital AM of light, geometric phase, spin- and orbital-Hall effects of light General theory for nonparaxial optical fields: modified SAM, OAM, and position operators. Bessel-beams example, spin-orbit splitting of caustics and Hall effects Electron vortex beams, AM of electron, orbital-Hall effect. Relativistic nonparaxial electron: Bessel beams from Dirac equation General theory of SAM, OAM, position, and magnetic moment of Dirac electron.

43
THANK YOU!

Similar presentations

OK

The Impact of Special Relativity in Nuclear Physics: It’s not just E = Mc 2.

The Impact of Special Relativity in Nuclear Physics: It’s not just E = Mc 2.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on social problem in contemporary india Ppt on time division switching Ppt on special education in india Ppt on op amp circuits Ppt on tsunami warning system Sources of water for kids ppt on batteries Ppt on saas business model Ppt on save tigers in india download Ppt on australian continent facts Ppt on barack obama leadership skills