Presentation is loading. Please wait.

Presentation is loading. Please wait.

16-20 Dec 2014, IDRBT, Hyderabad By Biswajit Halder 1, Rajkumar Darbar 2, Utpal Garain 3 and Abhoy Ch. Mondal 1 1Dept. Of Computer Science, University.

Similar presentations


Presentation on theme: "16-20 Dec 2014, IDRBT, Hyderabad By Biswajit Halder 1, Rajkumar Darbar 2, Utpal Garain 3 and Abhoy Ch. Mondal 1 1Dept. Of Computer Science, University."— Presentation transcript:

1 16-20 Dec 2014, IDRBT, Hyderabad By Biswajit Halder 1, Rajkumar Darbar 2, Utpal Garain 3 and Abhoy Ch. Mondal 1 1Dept. Of Computer Science, University Of Burdhwan, Burdhwan, W.B., India 2 School of Information Technology, IIT, Kharagpur, India 3 Indian Statistical Institute, Kolkata, India Analysis of fluorescent paper pulps for detecting Counterfeit Indian paper money 10 th International Conference of Information System and Security

2 Counterfeiting of bank notes Press Release - [1] “1 st half of Biannual information on euro banknote counterfeiting - on average 14.6 billion” –by European central bank on 16 July 2012 [2] “In the Fiscal Year, the Reserve Bank of India detected 521,155 counterfeit banknotes in India. The number of detects was 20 percent higher than Fiscal Year.” – by Hindustan Times, August 26, 2012 [3] "During , the detection of counterfeit notes of Rs 1,000 and Rs 100 increased by 11.8% and 9.8 percent respectively, whereas that of Rs 500 denomination decreased by 10.3%," the central bank said in its annual report

3 Automatic Authentication Required Automatic Authentication process manual authentication of security features time consuming process unattractive solution Present Drawback -Not consider paper based security -Paper quality check depend on physical contacts -Question raise on Speed and accuracy

4 Color optical pulp based paper security -Embedding certain special ingredients at the time of manufacturing -Security fibers may be metallic or photo- chromic. -luminescent Under ultraviolet (UV) ray

5 Motivation -The pattern recognisation and artificial intelligence principles. -Ideas of feature extraction done from rice grain detection

6 Compare with paper pulp detection Similarity – i) shape ii) color ii) distribution Dissimilarity – i) other artwork involve ii) factor of non pulp elements

7 overall approach It’s divided into a number of stages:- (i) Detect pulps in a UV scanned banknote under identification and verification phase (ii) Extract features from the detected pulps (iii) Train a NN classifier based training samples that include both genuine and fake notes. (iv) Trained classifier configured as 2-class (genuine vs. fake) problem.

8 Algorithm-I: PULP IDENTIFICATION Step 1: Acquire the currency note image (RGB) by UV light Step 2: Image Complement (RGB -> CMY) Step 3: Extract cyan image Step 4: Apply median filter Step 5: Convert binary image by OTSU thresholding Step 6: Connected component labelling of background pixels Step 7: Compute centroid of each component

9 Algorithm-II: ELIMINATION OF NON- PULP ELEMENTS Step 1: Around each centroid as detected at Step 7 of Al- gorithm-I, mxm sub-image is cropped from the initial RGB image Step 2: For each such sub-image, compute Gray Level Co- occurrence Matrix (GLCM) [17] under consideration of two adjacent pixels on four directions: 0, 45, 90, and 135 degree Step 3: Generate texture level four statistical features i.e. contrast, correlation, energy and homogeneity from each co-occurrence matrix [17] Step 4: Configure an artificial neural Network (ANN) for discriminating pulps from non-pulp particles

10 Detection (a) Detected pulps after execution of Algorithm-I (b) Pulps after elimination non-pulp elements by Algorithm-II.

11 Flow-Chart

12 Features – (i) Area (f1): The number of pixels inside pulp identified by a connected component. (ii) Rectangular aspect ratio (f2): The ratio of the length and width of the rectangle bounding the pulp. (iii) Pulp Aspect ratio (f3): The ratio of the lengths of the major and minor axes. (iv) Shape factor (f4): Root means squared deviation of diameter of the pulp. (v) Avg. HSI (f5, f6, f7) (vi) Variances of HIS (f8, f9, f10)

13 Training of the Classifier Multilayer back propagation neural network (BPNN) used under following specification – -Input, 10 node for 10 features and output, 1 node -No. of node in hidden layer computed by where I and O, input and output node Y is no of pattern in training set - gradient descent method used for optimization

14 Pulp level authentication using Neural Network.

15 Document level authentication using Neural Network. It No.Genuine SampleFake Sample GFCFGC Avg.94%3% 90.50%4.50%5%

16 Behavior of the neural net in classifying pulps (a) confusion matrix (b) ROC plot

17 RMSE Plot and Classification Rate

18 THANK YOU I am sincerely thank the questioned document examiners of the Central Forensic Science Laboratory (CFSL), Govt. of India for their kind help and cooperation. Acknowledgements


Download ppt "16-20 Dec 2014, IDRBT, Hyderabad By Biswajit Halder 1, Rajkumar Darbar 2, Utpal Garain 3 and Abhoy Ch. Mondal 1 1Dept. Of Computer Science, University."

Similar presentations


Ads by Google