Download presentation

Presentation is loading. Please wait.

Published byFelix Blakeman Modified about 1 year ago

1
Physics 114 – Spring 2015 Prof. Martin Guthold Office: Olin 302, Lab: Olin 202 Phones: (office); (cell); (home) OFFICE HOURS Mo, We, Fr, 1:00-2:00 pm, 302 Olin Feel free to drop by or make appointments, and I’ll try to accommodate you. Physics 114 is the second course in a two-semester sequence in calculus-based general Physics. It does require the use of calculus and vector calculations. Calculus (Math 111) and Physics 113 (Mechanics, oscillations, waves) are a pre-requisite. SCHEDULE Lectures are on: Monday, Wednesday, Friday 11:00 am – 11:50 am; room Olin 101 Labs: All students must also enroll in one laboratory session. Labs will begin the week of Jan. 26; room Olin 104. Labs cannot be made up on other days. Attendance in the labs is required. PHYISCS 114 SYLLABUS

2
TEXT AND MATERIALS Required text book: Physics for Scientists and Engineers, 9 th ed. by Serway & Jewett vol. 2 Required: For the lab you must get the lab manual from the bookstore (~$15). Required: Sign up for WebAssign (~ $70 (includes e-book), more details below). Required: i-clickers (bookstore (~$30) or app on cell phone (~$9), can be used for other classes) Optional: Student solution manual (can help with some homework problems). EXAMS AND GRADING There will be one, comprehensive, 3-hour final exam and two1-hour, evening midterm exams given at the dates listed below. Homework problems will be assigned for each chapter and they will be also be graded. 1. Exam 20 % 2. Exam 20 % Final Exam 30 % Lab 15 % Homework10 % i-clickers 5% Participation can move borderline grades. Exams: Exam 1:Friday, Feb. 13, 5:00 – 6:00 pm or 6:00 – 7:00 pm (Chapters 23-26) Exam 2: Friday, March 27, 5:00 – 6:00 pm or 6:00 – 7:00 pm (Chapters 27-31) Final:Tuesday, May 5, 2:00 pm – 5:00 pm (comprehensive, Chapters 23-34)

3
HOMEWORK AND PROBLEM SOLVING Homework and problem solving is an important part of learning in a Physics course. Approximately questions or problems per chapter will be assigned as homework. We will use WebAssign. Homework is usually due one or two lectures after it has been assigned. (Late HW – 20% reduction per day). Some homework problems may also re-appear on the exams and the final. You may collaborate on homework, but must submit your own work. POSTINGS Homework, practice exams, all lecture notes and all other material relating to the course will be posted on the web site for the class: To get ready for class: Print out lecture notes before class and bring to class. Go through notes, easy i-clicker will test reading at beginning of class). This class does not use CourseInfo or Blackboard or Sakai. WebAssign (http://www.webassign.net/) will be implemented for standard homework assignments. You have five attempts to get the answers right. Access codes to WebAssign ($70, includes e-book) need to be purchased from the bookstore or WebAssign. ATTENDANCE It is expected that students attend all scheduled classes. Attendance at the two exams and the final is required. Absence on the exams will result in a zero grade unless an official excuse is presented. Excuses should be reported to me in advance. i-clicker gives one point for attendance, one for each correct answer.

4
Demos: Understand them & and take notes. (May pop up in exam) Powerpoint presentations Download from print out (e.g. three slides on a page) and bring to lecture. Lots of whiteboard work (bring note pad to each class; take notes!!) i-clickers: Concept questions and quick quizzes with immediate feedback. Lecture format:

5
Labs - The labs take place in Olin Lab manager: Eric Chapman (Olin 110), phone: Your lab teaching assistants (TAs): Huang, Wenxiao (2) Li, Wei (2) Guy, Emily (1) Xiao, Jiajie (2) Soliman, Karim (1) Taylor, Alex (1) Need to buy lab manual - Labs start week of Jan. 26

6
PHY114 TUTOR SESSIONS The tutor sessions in past semesters past were successful and received high marks from many students. All students are encouraged to take advantage of this opportunity. The tutorials are in room Olin 101. SundayMondayTuesdayWednesdayThursdayFridaySaturday 5:00 pm – 7:00 pm Jiajie Xiao Lauren Nelson Jiaje Xiao

7
Pandemic Plan In case of pandemic or major disaster striking the University (University closing, or instructor unavailable): Tiered plan: –Class might be covered by other instructor (if available). –The lecture notes (ppt slides) will be distributed to you via the class web page, or regular mail. –Short movies covering the major points may be posted on the class web page. –You may be given a CD or DVD with all the lecture notes and exams to be taken. –Exams will be taken on the dates indicated in the syllabus. Exams will be taken in a location to be announced or will be sent to you via web page, or regular mail.

8
Material covered in this class (Chapters 23-38, Physics for Scientists and Engineers, 9 th ed. vol. 2) Electricity and Magnetism 23.Electric Fields 24.Gauss’s Law 25.Electric Potential 26.Capacitance and Dielectrics Exam 1 (Chapters )May cover some of this material 27.Current and Resistance 28.Direct-Current Circuits 29.Magnetic Fields 30.Sources of Magnetic Field 31.Faraday’s Law Exam 2 (Chapters ) 32.Inductance 33.Alternating-Current Circuits (tentative) 34.Electromagnetic Waves Final exam (Chapters 23-34) Light and Optics 35.The Nature of Light, Ray Optics 36.Image Formation 37.Wave Optics 38.Diffraction Patterns and Polarization On average, we’ll spend about 2.5 lectures per chapter.

9
A few slides about WebAssign: Log-in Your address: e.g. gutholdm wfu Set your own password Some students who already have accounts should be able to re-use them (but still need to pay for each class

10
A few slides about WebAssign: What to purchase There are two options to purchase WebAssign: 1.Purchase access code online. 2.Enter access code (purchased with textbook from bookstore).

11
A few slides about WebAssign: What to purchase Lifetime of Edition (LOE) You are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost (you can also use for Physics 113 & 114). 2015: The options have unfortunately changed: If you don’t by the book (buy access online), only $75 and $100 option are available (access plus e-book) The e-book is basically just a nice electronic version of the book. You don’t need it if you have the text book.

12
A few slides about WebAssign: Notation, significant figures Notation (use scientific notation): 2.32 ‧ 2.32e-4 (in WebAssign) Need to use three significant figures (unless otherwise stated).

13
Fundamental units Time second s Distancemeter m Masskilogram kg TemperatureKelvin K Charge Coulomb C SI Units Derived units ForceNewtons Nkg m/s 2 EnergyJoule JN m PowerWatt WJ/s FrequencyHertz Hzs -1 Elec. PotentialVolt VJ/C CapacitanceFarad FC/V CurrentAmpere AC/s ResistanceOhm V/A Mag. FieldTesla TN s/C/m Magnetic FluxWeber WbT m 2 InductanceHenry HV s/A Metric Prefixes 10 9 G Giga M Mega k kilo m milli micro n nano p pico f femto- Red boxes mean memorize this, not just here, but always!

14
Vectors A scalar is a quantity that has a magnitude, but no direction Mass, time, temperature, distance In a book, denoted by math italic font A vector is a quantity that has both a magnitude and a direction Displacement, velocity, acceleration In books, usually denoted by bold face When written, usually draw an arrow over it In three dimensions, any vector can be described in terms of its components Denoted by a subscript x, y, z The magnitude of a vector is how long it is Denoted by absolute value symbol, or same variable in math italic font x y z vxvx vyvy vzvz

15
Finding Components of Vectors If we have a vector in two dimensions, it is pretty easy to compute its components from its magnitude and direction x y v vxvx vyvy We can go the other way as well In three dimensions it is harder

16
Unit Vectors We can make a unit vector out of any vector Denoted by putting a hat over the vector It points in the same direction as the original vector The unit vectors in the x-, y- and z-direction are very useful – they are given their own names i-hat, j-hat, and k-hat respectively Often convenient to write arbitrary vector in terms of these Adding and Subtracting Vectors To graphically add two vectors, just connect them head to tail To add them in components, just add each component Subtraction can be done the same way

17
Multiplying Vectors There are two ways to multiply two vectors The dot product produces a scalar quantity It has no direction It can be pretty easily computed from geometry It can be easily computed from components The cross product produces a vector quantity It is perpendicular to both vectors Requires the right-hand rule Its magnitude can be easily computed from geometry It is a bit of a pain to compute from components

18
Chapter 23: Electric Fields Reading assignment: Chapter 23 Homework 23.1, due Wednesday, Jan 21: QQ1, QQ2, 1 (all homework is on WebAssign) -Sign up (purchase access code) and check out WebAssign: -Purchase i-clicker, book, lab manual Homework 23.2, due Monday, Jan. 26: QQ3, 9, 12, 15, 17 Homework 23.3, due Wendesday, Jan. 28: QQ5, OQ7, 29, 31, 49, 53, 57, 72

19
Chapter 23: Electric charge and electric field Benjamin Franklin ( ) - Named positive and negative charges Charles Coulomb ( ) - Forces between charges Michael Faraday ( ) - Electric field Electrostatics: Interaction of charges which are not moving

20
POSTIIVE CHARGE Human Hands (usually too moist) Rabbit Fur Glass Human Hair Nylon Wool Fur Lead Silk Aluminum Paper Cotton Steel (neutral) Wood Amber Rubber Balloon Hard Rubber Nickel, Copper Brass, Silver Gold, Platinum Polyester Styrene (Styrofoam) Saran Wrap Polyurethane Polyethylene (like scotch tape) Polypropylene Vinyl (PVC) Silicon Teflon (very negative) NEGATIVE CHARGE Triboelectric sequence: The items on top are less attractive to electrons and become positively charged, while the items on the bottom are more attractive to electrons and become negatively charged. Thus, on contact between any two substances shown in the column, the one appearing above becomes positively charged, the one listed anywhere below it becomes negatively charged Franklin observed: When rubbing objects together, charges can get transferred from one object to the other. Each transferred electron adds negative charge to the silk and an equal positive charge is left on the glass rod

21
Two types: positive and negative (negative charge is carried by electrons and positive charge is carried by protons (see atom model in two slides)) Like charges repel Opposite charges attract Charge is conserved (net amount of electric charge produced in any process is zero) Charge is quantized (charge is always an integer multiple of fundamental unit of charge, e = 1.6· C) Unit of charge: 1 Coulomb (1C) (= 6.25·10 18 electrons) From: Physics by Giancoli Properties of electric Charges:

22
i-clicker 23.1: Three objects are brought close to each other, two at a time. It is found that object 1 and 2 repel each other and that object 2 and 3 repel each other. From this we can conclude that: A.1 and 3 carry charges of opposite sign. B.1 and 3 carry charges of equal sign. C.All three carry charges of the same sign. D.One of the objects carries no charge. E.We need to do more experiments to determine the sign of the charges. From: Physics by Giancoli

23
The nature of matter Atoms: Electrons, Protons, Neutrons Electrons: - Protons: + Neutrons: 0 Nucleus Ion: Atom +/- Electron C+ e- Matter: Nuclei with positive charges Surrounded by ‘sea’ of electrons

24
White board example What is the charge and (average) mass of a single Na + ion? (Hint: Na has atomic mass 22.99; thus, 1 mole ( 6.022·10 23 particles) of Na atoms have mass g. The atomic mass unit (1/12 th the mass of carbon atom) is 1.66· kg.) Image of sodium ion:

25
Insulators: Materials in which the electrons are tightly bound to the nucleus and are not free to move through the material (glass, rubber, plastic, dry wood are good insulators) Conductors: Materials through which the electrons are free to move (typically metals: silver, gold, copper, mercury) Semiconductors: Materials with a few free electrons and the material is a poor conductor. At higher temperatures electrons break free and move through the material (silicon, germanium, carbon (graphite)). Insulators and conductors

26
Some ways to charge objects By rubbing them together (triboelectric, tribo (greek) = to rub) Not well understood By chemical reactions This is how batteries work By moving conductors in a magnetic field Get to this later By connecting them to conductors that have charge already That’s how outlets work Charging by induction Bring a charge near an extended conductor Charges move in response Separate the conductors Remove the charge + – – – – –

27
i-clicker 23.2: Three objects are brought close to each other, two at a time. It is found that object 1 and 2 attract each other and that object 2 and 3 repel each other. From this we can conclude that: A.1 and 3 carry charges of opposite sign. B.1 and 3 carry charges of equal sign. C.All three carry the charges of the same sign. D.One of the objects carries no charge. E.We need to do more experiments to determine the sign of the charges. Related: How do balloons stick to a wall?

28
Coulomb’s Law Like charges repel, and unlike charges attract The force is proportional to the charges It depends on distance q1q1 q2q2 Notes The r-hat just tells you the direction of the force, from 1 to 2 The Force as written is by 1 on 2 Sometimes this formula is written in terms of a quantity 0 called the permittivity of free space Coulomb constant

29
i-clicker 23.3: Object A has a charge of +2 C and object B has a charge of +6 C. Which statement is true about the electric force on the objects? A. B. C. D. E. Electric force and graviational force have same functional form. Unless we have huge masses, the electric force is much larger than the gravitational force

30
Whiteboard problem 23.2 Three point charges are located at the corners of an equilateral triangle as shown below. Calculate the net electric force on the 7.0 C charge. Use superposition principle and vector addition

31
The electric field (important – will come up many times this semester) Many forces are ‘contact forces’, that require contact between objects (e.g. hammer and nail, friction between tires and road) Gravitational and electrical force act over a distance (even through vacuum) field forces Faraday developed the idea of a field: An electric field extends outward from every charge (source charge) and permeates all of space. Q Test charge q 0 The electric field of a positive point charge Q Definition: The electric field,, at any point in space is defined as the force,, exerted on a tiny positive test charge, q 0 at that point, divided by the magnitude of the test charge.

32
is independent of the tiny test charge, q 0, and only depends on the source charge, Q, which produces the field. points away from a positive charge and points toward a negative charge. is a vector field, it has a direction in space everywhere. Unit is N/C (Newton/Coulomb) (later: also Volt/meter) The electric field +Q Test charge q 0 The electric field of a positive point charge Q Electric field of a point charge:

33
Electric Field from Discrete Distribution of Charges The electric field at point P due to a group of source charges can be written as the vector sum of all the individual fields: Calculate the total electric field at point A and at point B due to both charges, Q 1 and Q 2. Use symmetry to save work, when possible. White board example 23.3 (field of a dipole)

34
Electric field lines In order to visualize the electric field we draw a series of field lines that indicate the direction of the field at various points in space. Lines indicate direction of field, they go from positive to negative Electric field points along tangent of electric field lines Density of lines is proportional to field strength Number of lines starting/ending on a charge is proportional to the magnitude of the charge. No two lines cross each other (Why?)

35
i-clicker 23.5: Rank the magnitude of the electric field at points A, B, and C (greatest to smallest). A.A, B, C B.B, C, A C.C, A, B D.A, C, B E.B, A, C

36
Motion of a Charged Particle in a Uniform Electric Field A charged particle in an electric field, E, will experience an electric force F = q·E, and will, thus, accelerate, with a = F/m Here, gravitational force is 15 orders of magnitude weaker than electric force. Therefore we can typically omit the gravitational force connected with electrons or protons. White board example An electron (mass, m e = 9.1· kg) is accelerated in the uniform electric field (E = 5.0·10 4 N/C) between two parallel charged plates separated by a distance 1.5 cm. The electron is accelerated from rest near the negative plate and passes through a tiny hole in the positive plate. (a) Is the gravitational force important in this problem? (b) With what speed does the electron leave the hole?

37
Review: Electric charge - positive, negative Charge is conserved Charge is multiple of e Conductors, Insulators Coulombs law Force between point charge distributions (know how to calculate) Superposition principle Electric field Electric field of a point charge distribution (know how to calculate) Electric field lines Motion of a charges in a uniform electric field Extra Material: Electric field of a continuous charge distribution (know ‘simple’ cases)

38
Extra Material

39
Electric Field from a Continuous Charge Distribution (can get complicated, quickly…) P Electric field can come from charge spread on a line, on a surface, or throughout a volume: Linear charge density ; units C/m Multiply by length Surface charge density ; units C/m 2 Multiply by area Charge density ; units C/m 3 Multiply by volume dl dV dA The concept of charge density

40
White board example A rod of length l has a uniform positive charge per unit length λ and a total charge q. Calculate the electric field at a point P that is located along the long axis of the rod and a distance, a, from one end. y x P l x a Electric Field from a Continuous Charge Distribution Example: Electric field due to a charged rod Quick Quiz: Find the electric field at the center of a uniformly charged ring.

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google