Presentation is loading. Please wait.

Presentation is loading. Please wait.

Section 8.4 Molecular Shapes Summarize the VSEPR bonding theory. atomic orbital: the region around an atom’s nucleus that defines an electron’s probable.

Similar presentations


Presentation on theme: "Section 8.4 Molecular Shapes Summarize the VSEPR bonding theory. atomic orbital: the region around an atom’s nucleus that defines an electron’s probable."— Presentation transcript:

1

2 Section 8.4 Molecular Shapes Summarize the VSEPR bonding theory. atomic orbital: the region around an atom’s nucleus that defines an electron’s probable location VSEPR model hybridization Predict the shape of, and the bond angles in, a molecule. Define hybridization. The VSEPR model is used to determine molecular shape.

3 VSEPR Model The shape of a molecule determines many of its physical and chemical properties. Molecular geometry (shape) can be determined with the Valence Shell Electron Pair Repulsion model, or VSEPR model which minimizes the repulsion of shared and unshared electrons around the central atom.VSEPR model

4 VSEPR Model (cont.) Electron pairs repel each other and cause molecules to be in fixed positions relative to each other. Unshared electron pairs also determine the shape of a molecule. Electron pairs are located in a molecule as far apart as they can be.

5 VSEPR Theory Types of e - Pairs (around central atom) Bonding Areas - from bonds (single, double, triple) all count as one pair Bonding Areas - from bonds (single, double, triple) all count as one pair Lone pairs - nonbonding e - Lone pairs - nonbonding e - Lone pairs repel more strongly than bonding pairs!!!

6 Draw the Lewis Diagram. Tally up e - pairs on central atom. Single/double/triple bonds = ONE pair (AREA) Single/double/triple bonds = ONE pair (AREA) Shape is determined by the # of bonding AREAS and LONE PAIRS. Know the 8 common shapes & their bond angles! Determining Molecular Shape

7 Common Molecular Shapes e - Tally 2 total 2 bond areas 0 lone pairs LINEAR180° BeH 2

8 e - Tally 3 total 3 bond areas 0 lone pairs TRIGONAL PLANAR 120° BF 3 Common Molecular Shapes

9 e - Tally 4 total 4 bond areas 0 lone pairs TETRAHEDRAL109.5° CH 4 Common Molecular Shapes

10 e - Tally 4 total 3 bond areas 1 lone pair TRIGONAL PYRAMIDAL 107° NH 3 Common Molecular Shapes

11 e - Tally 3 total 2 bond areas 1 lone pair BENT<120° SO 2

12 e - Tally 4 total 2 bond areas 2 lone pairs BENT104.5° H2OH2OH2OH2O Common Molecular Shapes

13 e - Tally 5 total 5 bond areas 0 lone pairs TRIGONAL BIPYRAMIDAL 120°/90° PCl 5 Common Molecular Shapes

14 e - Tally 6 total 6 bond areas 0 lone pairs OCTAHEDRAL90° SF 6 Common Molecular Shapes

15 PF 3 4 total 3 bond areas 1 lone pair TRIGONAL PYRAMIDAL 107° F P F FExamples

16 CO 2 O C O 2 total 2 bond areas 0 lone pair LINEAR180° Examples

17 Hybridization Is the process by which s, p, and d orbitals combine to form new identical orbitals The hybridization is equal to the total number of Bonding Areas and lone pairs around the central atom in the molecule. For example: water has two bonding areas and two lone pairs of electrons, so we need 4 total hybrid orbitals = one s orbital and three p orbitals = sp 3

18 Hybridization (cont.) Single, double, and triple bonds occupy only one hybrid orbital (CO 2 with two double bonds forms an sp hybrid orbital).

19 Hybridization (cont.)

20

21

22 A.A B.B C.C D.D Section 8.4 Assessment The two lone pairs of electrons on a water molecule do what to the bond angle between the hydrogen atoms and the oxygen atom? A.They attract the hydrogen atoms and increase the angle greater than 109.5°. B.They occupy more space and squeeze the hydrogen atoms closer together. C.They do no affect the bond angle. D.They create resonance structures with more than one correct angle.

23 A.A B.B C.C D.D Section 8.4 Assessment The sp 3 hybrid orbital in CH 4 has what shape? A.linear B.trigonal planar C.tetrahedral D.octahedral


Download ppt "Section 8.4 Molecular Shapes Summarize the VSEPR bonding theory. atomic orbital: the region around an atom’s nucleus that defines an electron’s probable."

Similar presentations


Ads by Google