Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Physics of Electrostatic Air Cleaners and Xerox Machines.

Similar presentations


Presentation on theme: "The Physics of Electrostatic Air Cleaners and Xerox Machines."— Presentation transcript:

1 The Physics of Electrostatic Air Cleaners and Xerox Machines

2 Preliminaries…. Not all things can be explained by gravity, mechanical forces: Shocking your self by touching doorknobs, car doors. Hair-raising experiences Lighting a flourescent lamp while walking on a carpet Observed ‘Repulsion’ & Strength of Attraction’ Postulate: 1. Presence of ‘charges’(2 types: positive & negative) that flow from 1 object to another 2. Opposite charges attract (pull). Like charges repel (push) 3. Forces increase with decreasing separation.

3 What we know about ‘electric charges’ Charge is conserved Charge is quantized in fundamental units of e = 1.6 x Coulombs Charge is intrinsic to matter: Sub-atomic particles: electrons have q = - e protons have q = + e What does it mean to have a net charge ? Net charge is the sum of an object’s +,- charges. Just because an object is negatively-charged doesn’t mean it has no + charges Normally, objects have neutral charge (equal +, - charges) How does one normally ‘charge’ an object ? By rubbing against a different material Connecting to one side of a battery

4 Electrostatic Force between two Point Charges F = k q 1 q 2 / r 2 proportional to the magnitude of charges inversely proportional to the square of the separation r = m +q 1 +q 2 Coulomb’s Law where k = 9 x10 9 N-m 2 /C 2 (Coulomb’s constant) Electrostatic force is much stronger than gravitational force! Example: F(electrostatic between 2 electrons) = (9x10 9 N-m 2 /C 2 )(1.6x C) )(1.6x C)/( m) 2 = 23 x N(electrostatic) F gravitational = (6.67x N-m 2 /kg 2 )(9.1x kg) 2 /( m) 2 = 55 x N (grav)

5 Charges in Conductors (metals) Charges in metals move to the surface and disperse from each other E = 0 Charges can discharge to the environment: - Charges on sharp corners can leap, escape onto air molecules - ‘Corona discharge’ – accompanied by ‘glowing’, happens with high humidity. - can be discharged by ‘touching’ - Ionization: spark of arc forms Everyday Applications: Lightning Rods Applications: Shielded Rooms

6 Can objects attract/repel even if they are neutral ? A B neutral + charged still neutral induced polarization Everyday examples: neutral hair close to a charged comb negatively-charged dust sticking to a neutral wall or surface attraction ! Yes, the opposite charges are closer than the like charges and the effect is thus, attraction !

7 Problem: Undesirable Air Particles in Factories, Hospitals, etc. Solution: Use an Electrostatic Precipitator or Filter

8 Application 1: Electrostatic Air Cleaners Dust particles charged negatively in air charged using high voltage and collected on positively- charged metal plates

9 Application 2 : The Xerox Machine 1938 Chester Carlson made the prototype photocopier First Photocopy First commercial photocopier

10 What are Electric Fields ? Two Ways of Viewing Charge – Charge Interactions: 1. Charge q 1 feels a force due to charge q Charge q 1 feels a force due its interaction with an electric field E set up by charge q 2. q2q2 q1q1 E – magnitude proportional to the generating charge q 2 direction at a point is in the direction of the force felt by a unit + test charge at point ++ E q2q2 q1q1

11 Particles in Nature Bosons: Photons - indistinguishable bosons can share waves Applications: lasers, superconductors Fermions: electrons, protons, neutrons - 1 indistinguishable fermion/wave - follow’s Pauli’s exclusion principle Let’s look at electrons flowing in solids travel like waves in a solid, w/ specific energy levels occupy each level two at a time: Spin up and spin down electrons levels filled from lowest to highest energy levels form ‘bands’: valence band (highest level is Fermi level) beyond valence band is conduction band

12 Metals vs. Insulators vs. Semiconductors 1.Metals - have empty levels above Fermi energy levels Analogy of electron flow in metals: Like guests in a partly-filled 1-floor theatre, electrons readily move, responding to applied electric fields Energy Fermi level (ground floor) filled level vacant level 2 Insulators – no empty levels near Fermi level Analogy: Ground floor is full. High balcony. electrons can’t respond to forces Energy Valence band: filled (ground floor) Conduction bands (high balcony)

13 3. Semiconductors – narrow gap between valence & conduction bands; poor insulators/conductors at room temp. Analogy: Guests in a theatre with low balcony Conduction band (low balcony) Valence band Energy (light or Heat) Electrons can hop into the low ‘balcony’ and move. Application: Photoconductors in Xerox Machines insulating in the dark conducting in the light: Light in the form of photons, give energy for electrons to bridge gap. (gap is smaller)

14 photoconductor Corona discharge The Xerox Process Photoconductor is coated with negative charge Exposure to light from original erases charge to form a charge image. Light charge image Charge image attracts + charged toner particles toner particles

15 Light Charge image is erased to release the toner particles Negatively charged paper The toner is transferred to negatively- charged paper Heat Toner is fused to paper by heat. Copy is now done. Cycle is then repeated.

16 Inside a Photocopier


Download ppt "The Physics of Electrostatic Air Cleaners and Xerox Machines."

Similar presentations


Ads by Google