Matter Unit Vocabulary

Presentation on theme: "Matter Unit Vocabulary"— Presentation transcript:

Matter Unit Vocabulary

Matter Kinetic Theory Solid Liquid Gas Plasma Phase change Freezing Melting Deposition Sublimation Condenstation Vaporization Physical properties Ducility Malleability Melting point Boiling point Freezing point Solubility Reaction to light Electrical conductivity Chemical properties Flammability Oxidation decomposition Physical change Chemical change Demoritus John Dalton JJ Thomson Ernest Rutherford Niels Bohr Atomos Bohr Model Cloud Model Valence Electrons Energy Levels Shells Properties of Water Universal solvent Adhesion Cohesion High specific heat Capillary action Surface tension Polarity States of matter Heat of vaporization pH

Matter Anything that has mass and occupies space
The materials or “stuff” that all objects and substances in the universe are made of 4 States of Matter = Solid, liquid, gas, and plasma

Matter Because all matter takes up space (has volume) and contains a certain amount of material (has mass), all matter can be detected and measured

Examples of Matter Rocks, water, trees, bicycles, lighting, animals, stars, smoke, are all easily seen and observed Dust mites that live in your furniture and rugs you may need a microscope to view Air maybe invisible but we can feel it when the wind blows and see it bend the branches of trees (oxygen, nitrogen, hydrogen, CO2)

What is not matter? Light Sound Gravity Friction

Matter Atoms are the building blocks of matter
The elements in our periodic table make up all matter

Kinetic Theory All matter consists of tiny particles that are in constant motion.

Kinetic Theory 1. All matter is composed of small particles (atoms, molecules, or ions). There is an attractive force between them. 2. They are in constant, random motion. The particles may collide with one another or the sides of their container. 3. As the temperature increases the speed of the particles increases. As the temperature decreases the speed of the particles decreases.

SOLIDS State of matter that has a definite shape and a definite volume. Particles of solids are tightly packed, vibrating about a fixed position. Particles are strongly attracted to each other

LIQUID A state of matter that has a definite volume but takes the shape of its container Liquids do not have a definite shape Particles of liquids are tightly packed, but are far enough apart to slide over one another, allowing it to flow

GAS A state of matter that has no definite shape and no definite volume; expands to fill the shape of its container Particles of gases are very far apart and move freely. Attractive forces are very weak • Contain mostly empty space – because the particles are so far apart • Particles spread throughout a given volume until distributed equally – diffusion

Gas vs. Vapor Gas – a substance that is naturally in the gaseous state at room temperature EXAMPLE: Helium Vapor – the gaseous state of a substance that is a solid or liquid at room temperature EXAMPLE: Steam

PLASMA Plasma is the most common state of matter in the universe
A state of matter that does not have a definite shape or volume and whose particles have broken apart Consists of + and – charged particles (electrons are knocked off due to collisions) A plasma is a very good conductor of electricity and is affected by magnetic fields. Plasma is the most common state of matter in the universe

STATES OF MATTER SOLID LIQUID GAS PLASMA
Tightly packed, in a regular pattern Vibrate, but do not move from place to place, definite shape and volume Close together with no regular arrangement. Move about, flow and slide past each other. Definite volume, no definite shape takes shape of its container. Well separated with no regular arrangement. Move freely at high speeds. No definite shape or volume. Easily compressible. Has no definite volume or shape and is composed of electrical charged particles PLC-Unit 1B

STATES OF MATTER LIQUID PLASMA SOLID GAS
Tightly packed, in a regular pattern Vibrate, but do not move from place to place Close together with no regular arrangement. Vibrate, move about, and slide past each other Well separated with no regular arrangement. Vibrate and move freely at high speeds Has no definite volume or shape and is composed of electrical charged particles

A transition of matter from one state to another.
Phase Change A transition of matter from one state to another.

Some phase changes are more common and easier for us to visualize
Some phase changes are more common and easier for us to visualize. For example, you have probably witnessed freezing, melting, and vaporization just by making ice, melting ice, and boiling water.

Condensation often occurs on the outside of cold beverage containers
Condensation often occurs on the outside of cold beverage containers. This is when the humid air changes directly to a liquid on the surface of the container.

Sublimation Dry ice is actually solid carbon dioxide
Sublimation Dry ice is actually solid carbon dioxide. When it sits in the open or is placed in water it rapidly changes directly from solid to gas creating a foggy cloud.

Deposition Frozen patterns of ice on your car windshield is an example
Deposition Frozen patterns of ice on your car windshield is an example. Deposition involves a gas changing to a solid. This occurs during winter months when the humid air directly freezes into solid ice.

Physical properties Characteristics that can be observed without changing the makeup or identity of the matter Examples: color, size, state of matter, density, ductility, malleability, boiling point, melting point, freezing point, electrical conductivity, solubility, reaction to light

Density The ratio of the mass of an object to its volume
Formula: d = m/V Units: g/mL or g/cm3

Ductility The ability to be pulled into a thin strand EX: wire

Malleability The ability to be pressed or pounded into a thin sheet
EX: aluminum foil, sheet metal

Boiling Point The temp at which a substance changes from a liquid to a gas EX: the boiling point of water = 1000C

Melting Point The temp at which a substance changes from a solid to a liquid EX: the melting point of chocolate is 340C

Freezing Point The temp at which a substance changes from a liquid to a solid EX: the freezing point of water = 00C

Electrical Conductivity
How well a substance allows electricity to flow through it EX: copper wires, electrical lines

Solubility The ability to dissolve in another substance
EX: sugar in water

Reaction to Light Reflection – to bounce off ( mirror)
Refraction – to bend (water) Absorption – to take in (leaf)

Reaction to Light Transmission – allow to pass through
Opaque – little to no light passes through (blanket) Translucent – some light passes through (sunglasses) Transparent- most light passes through ( glass window)

Chemical properties The ability of matter to undergo a specific chemical change, creating a different type of matter with new properties Examples: flammability, decomposition, oxidation

Flammibility To burn Must occur in the presence of oxygen
EX: Flame tests help to identify metals by their characteristic flame color

Decomposition To rot or breakdown
Complex compounds breakdown to simpler substances EX: CO2 breaks down to Carbon and Oxygen

Oxidation The process of losing electrons
EX: iron rusts when exposed to oxygen

Physical Changes A process where a substance’s chemical properties have not changed Can be a change in size, color, shape, state of matter EX: ice melting, salt dissolving in water, glass breaking

Chemical Change Occurs when new substances or materials are produced to have different chemical properties from the reactants EX: rust is the product of iron and oxygen, wood burning

Democritus Greek philosopher in 440 bc
Was the first to proposed the existence of atoms “Atomos” meaning “not to be cut”

John Dalton British chemist 1803
Atomic Theory – He came up with the theory that all substances were made of atoms Atoms were small, hard, dense spheres that could not be created, destroyed, or altered

Dmitri Mendeleev Known as the father of the present day periodic table
Organized the elements (each type of atom) by similar properties in 1869

J. J. Thomson British scientist 1898
Proposed that atoms themselves were made of smaller particles . He discovered that atoms contained negatively charged particles, but did not know their location

J. J. Thomson Theorized the negatively charged particles were spread evenly throughout the positively charged material Thomson’s model of the atom was called the “plum-pudding” model

Ernest Rutherford 1911 a former student of Thomson's
Proposed that atoms had a dense, positively charged nucleus surrounded by electrons

Niels Bohr 1913 Danish scientist
Said that electrons revolve around the nucleus in circular paths, called orbits And that electrons could only exist in certain orbits and at certain energy levels

Today’s model electron cloud model
Bohr’s model was an important stepping stone to today’s, which was developed in the 1920’s Electrons surround the nucleus, traveling not in prescribed paths but in regions of various thicknesses called clouds

Bohr Model Electrons orbit the nucleus of an atom in set energy levels
P = 20 N = 20

Energy Level The specific energies an electron in an atom can have
In the Bohr model used to describe the different orbits or shells that the electrons travel in around the nucleus

Valence Electrons The electrons in the highest or outermost energy level

Polarity When electrons are not shared equally in a covalent bond, causing one end of the water molecule to have a positive charge while the other has a negative charge

Each end of a water molecule is attracted to the opposite charged end of another water molecule. Water's polarity is responsible for the "stickiness" or cohesion between the molecules.

States of Matter The only known substance to naturally exist on Earth in all three states of matter is water Solid - Ice Gas - Clouds Liquid - Lakes

pH The measure of how acidic or basic water is Rainwater

Universal Solvent More substances dissolve in water than in any other liquid

Cohesion Water molecules are attracted to more water molecules so they stick to each other Water ↔ Water

Adhesion Water molecules are attracted to and stick to other substance Water ↔ Other

Surface Tension Water molecules have a stronger attraction to each other than to the air above, so the water molecules cling tightly to each other forming what’s like a skin at the surface

Capillary Action Movement of water within the spaces of a porous material due to the forces of adhesion, cohesion and surface tension

High Specific Heat The amount of energy required to raise the temperature of water by one degree Celsius is quite large, causing the temperature of water to change slowly

Heat of Vaporization Water absorbs heat as it changes from a liquid to a gas