Presentation is loading. Please wait.

Presentation is loading. Please wait.

Integrated HAM Modeling Integrated Heat Air & Moisture Modeling A.W.M. (Jos) van Schijndel Technische Universiteit Eindhoven.

Similar presentations


Presentation on theme: "Integrated HAM Modeling Integrated Heat Air & Moisture Modeling A.W.M. (Jos) van Schijndel Technische Universiteit Eindhoven."— Presentation transcript:

1 Integrated HAM Modeling Integrated Heat Air & Moisture Modeling A.W.M. (Jos) van Schijndel Technische Universiteit Eindhoven

2 Integrated HAM Modeling Background Building Physics and Systems –Thermal Comfort –Durability Energy Preservation –Building –Interior –Economics

3 Integrated HAM Modeling Example 1 : Thermal Comfort, convector PDE : Navier-Stokes + Buoyancy

4 Integrated HAM Modeling Example 1 : Thermal Comfort, convector PDE : Navier-Stokes + Buoyancy

5 Integrated HAM Modeling Durability of constructions Heat, Air & Moisture (HAM) transport

6 Integrated HAM Modeling PROJECT

7 Integrated HAM Modeling Example 2 Durability : 2D Moisture transport PDE : Coupled Heat & Moisture

8 Integrated HAM Modeling Example 3 Durability : wind and rain around a building PDE : Navier-Stokes + k-eps + trajectories

9 Integrated HAM Modeling Example 4 Durability: 3D Thermal construction PDE : Navier-Stokes + Buoyancy

10 Integrated HAM Modeling Multi scale coupling Whole Building (scale 10 m) Global building model [Abocad] Detail (scale 0.01 m) Local model Coupling? Coupled [Abocad]

11 Integrated HAM Modeling Problem Coupling External –Multiple software programs –BPS Research of Hensen et al. Internal –Single software: MatLab –BPS Research of Schijndel et al.

12 Integrated HAM Modeling

13 simulation environment: SimuLink Coupling of models

14 Integrated HAM Modeling

15 HAMLab, whole building (global) New Hybrid modeling approach –Both discrete and continuous Discrete: climate related Continuous: indoor air related –Accurate results for both time scales (hour & seconds) –Efficient calculation time

16 Integrated HAM Modeling HAMLab, whole building, example Annex 41 validation study

17 Integrated HAM Modeling

18 SimuLink using S-functions, Example (Heat Pump Model) 1/2

19 Integrated HAM Modeling function sys=mdlDerivatives( t, x, u) Tvm=(u(1)+x(1))/2; Tcm=(u(3)+x(2))/2; COP=u(6)*( Tcm)/(Tcm-Tvm);.. xdot(1)=(1/Cv)*(u(2)*cv*(u(1)-x(1))-(COP-1)*u(5)); xdot(2)=(1/Cc)*(u(4)*cc*(u(3)-x(2))+COP*u(5));.. %t = time %u(1)=Tvin %u(2)=Fvin %u(3)=Tcin %u(4)=Fcin %u(5)=Ehp %u(6)=k [-] % %x(1)=Tvout %x(2)=Tcout SimuLink using S-functions, Example (Heat Pump Model) 2/2

20 Integrated HAM Modeling Case study: energy roof system Introduction

21 Integrated HAM Modeling Case study: energy roof system Validation Heat Pump Model

22 Integrated HAM Modeling Case study: energy roof system Validation Energy Roof Model

23 Integrated HAM Modeling Case study: energy roof system Validation TES

24 Integrated HAM Modeling Case study: energy roof system Complete including Controllers 1/3

25 Integrated HAM Modeling Case study: energy roof system Complete including Controllers 2/3

26 Integrated HAM Modeling Case study: energy roof system Complete including Controllers 3/3

27 Integrated HAM Modeling

28 HAMLab, HVAC & primary systems, example HVAC & Indoor air simulation of museum GOAL: preservation of the original paper fragments (Note: nearly 1 million visitors per year)

29 Integrated HAM Modeling HAMLab, HVAC & primary systems, example HVAC & Indoor air simulation of museum 100% of time out of limits!

30 Integrated HAM Modeling HAMLab, HVAC & primary systems, example HVAC & Indoor air simulation of museum

31 Integrated HAM Modeling HAMLab, HVAC & primary systems, example HVAC & Indoor air simulation of museum

32 Integrated HAM Modeling HAMLab, HVAC & primary systems, example HVAC & Indoor air simulation of museum OK !

33 Integrated HAM Modeling

34 Airflow modeling, geometry and boundaries The boundary conditions are: At the left, right, top and bottom walls: u=0, v=0, T=0. At the inlet: u=1, v=0, T=1. At the outlet : Neuman conditions for u,v and T

35 Integrated HAM Modeling PDEs and FemLab model

36 Integrated HAM Modeling Air temperature with low inlet velocity Re =50, Gr =0

37 Integrated HAM Modeling Air temperature with high inlet velocity Re =1000, Gr =0

38 Integrated HAM Modeling Air temperature with high inlet velocity & buoyancy Re =1000, Gr =2.5e7

39 Integrated HAM Modeling Validated resultSimulation

40 Integrated HAM Modeling

41 Implementation in S-Function, target

42 Integrated HAM Modeling Implementation in S-Function

43 Integrated HAM Modeling Implementation in S-Function

44 Integrated HAM Modeling

45 Schade: sleeplade

46 Integrated HAM Modeling Schade: inwendige constructie

47 Integrated HAM Modeling Schade: scheuren pedaallade

48 Integrated HAM Modeling Complete Simulink model

49 Integrated HAM Modeling Indoor climate SimuLink model

50 Integrated HAM Modeling Indoor climate model, validation

51 Integrated HAM Modeling Moisture transport SimuLink model

52 Integrated HAM Modeling Moisture transport model, specifications

53 Integrated HAM Modeling NMR vochtgehalte metingen

54 Integrated HAM Modeling Houtvochtgehalte m.b.v. NMR

55 Integrated HAM Modeling Drogen van cilinder hout

56 Integrated HAM Modeling Moisture transport model, validation

57 Integrated HAM Modeling Controller SimuLink model

58 Integrated HAM Modeling Temperature, RH, w at surface

59 Integrated HAM Modeling Drying rate during 1 day

60 Integrated HAM Modeling Peak drying rate during 1 day

61 Integrated HAM Modeling Limitation of air changing rate, model

62 Integrated HAM Modeling model specifications

63 Integrated HAM Modeling Temperature, RH, w at surface

64 Integrated HAM Modeling Peak drying rate during 1 day

65 Integrated HAM Modeling Limitation of RH changing rate, model

66 Integrated HAM Modeling model specifications Trate = computed temperature changing rate [ o C/sec], Tair = air temperature [ o C], tdew = dewpoint function [ o C], Rh = relative humidity [%], psat = saturation pressure function [Pa], dRh = maximum relative humidity changing rate [%/h].

67 Integrated HAM Modeling Temperature, RH, w at surface

68 Integrated HAM Modeling Peak drying rate during 1 day

69 Integrated HAM Modeling Comparing control strategies

70 Integrated HAM Modeling Comparing control strategies

71 Integrated HAM Modeling Avoiding high peak drying rates Best solution –No heating Worst solution –Maximum heating capacity Limiting T changing rate –Preferred Limiting RH changing rate –Time of heating not constant –More complex controller

72 Integrated HAM Modeling


Download ppt "Integrated HAM Modeling Integrated Heat Air & Moisture Modeling A.W.M. (Jos) van Schijndel Technische Universiteit Eindhoven."

Similar presentations


Ads by Google