Presentation is loading. Please wait.

Presentation is loading. Please wait.

Frédéric Stevens Thesis seminar LCIS-GREENMat 1. Presentation’s main points Introduction Targets and problems Storage & Distribution method Materials.

Similar presentations


Presentation on theme: "Frédéric Stevens Thesis seminar LCIS-GREENMat 1. Presentation’s main points Introduction Targets and problems Storage & Distribution method Materials."— Presentation transcript:

1 Frédéric Stevens Thesis seminar LCIS-GREENMat 1

2 Presentation’s main points Introduction Targets and problems Storage & Distribution method Materials for solid storage Conclusions 2

3 Cavendish Henry : Inflammable air (1766) Introduction Hydro = water 3 Etymology HH Luft erhebt sich und bricht herfdir gleichwie ein Wind (‘Archidoxa‘, Paracelsus ( )) Lavoisier Antoine: Hydrogen (1783) 2 H 2 + O 2  H 2 O Dihydrogen History Dihydrogen Gen  genan = to generate

4 4 Introduction Montgolfier brother (1783) Zeppelin 1900 Streetlight in Paris (P. Lebon 1786) Internal combustion engine (1806 Rivaz) Hydrogen maser 1952 :Pr Robert H. Dicke Hydrogen fuel cell (W. R.G roove 1839) Applications

5 BASF C 2 H 5 -S-C 2 H H 2  H 2 S + 2 C 2 H Hydrodesulfuration Introduction Paul Sabatier Wilhelm Normann N 2 + 3H 2  2 NH Fritz Haber Popular reactions

6 6 57, ton/year 1 Introduction 1 AFH2 feb 2008

7 7 Phase diagram H 2 + ½ O 2  H 2 O ∆H= -285,97 kJ/mol at 25°C Fuel TypeEnergy Content (kJ/g) 1 dihydrogen120 Natural gas50 Kerosene46 Methanol20 H2H2 CH 4 Flammability limit4-76%5-15% density0,09 kg/m³0,67 kg/m³ Introduction

8 Why H 2 is not use as fuel for our cars? 8  Production  distribution and storage Targets and problems

9 H 2 is too volatile  unexploitable quantities in the nature  Must be produced 9 Targets and problems

10 10 Produced from other compounds CH 4 H2OH2O CnHmCnHm Targets and problems

11 11 Production: Synthesis Partial oxidation Plasma reforming Coal gasification Steam reforming Water CH 4 + H 2 O ⇌ CO + 3 H 2 CO + H 2 O → CO 2 + H 2 C n H m + n/2 O 2 → nCO 2 + m/2 H 2 CO 2 + CH 4 → 2CO + 2H 2 3C + O 2 + H 2 O → 3CO + H 2 2H 2 O + Energy → O 2 + 2H 2 ElectrolysisE= external applied voltage ThermolysisE= heat Photobiological water splitting E= sun Catalyst = biomolecule Photocatalytic water splitting E= sun Catalyst = inorganic compound Thermochemical processE= heat + other molecules

12 12 Targets & Possibilities Immobile and huge quantities Pipelines 100 kg - 1 ton and more

13 13 Pipelines Old technology (1938) Underground steel pipes (50 years old) No famous damage registered For more than 1 ton P= 3.4 to 100 bars Ø = 10 – 300mm Under development: To reduce the cost To reduce the weakening of steel provoked by H 2 To improve the soldered joints To improve the compression technology USA: 1150 km H2O2N2H2O2N2 EU: 1500km

14 14 Targets & Possibilities Mobile and/or limited quantitiesImmobile and huge quantities Pipelines < 100kg 100 kg - 1 ton and more 100 kg -1 ton Tanks

15 15 Requirements for cars Cars

16 16 Summary of the requirements Cars 500km /full tank Storing device (to compete fossil fuel) 6kg d’H 2 /100kg of storing device 45kg d’H 2 /m³ of storing device Working temperature: -30°C to 150°C Suitable pressure

17 17 Solid state hydrogen storage High pressure hydrogen storage Gas, supercritical fluid Cryogenic hydrogen storage Liquid Organic liquid Possibilities 700 bar Phase diagram Min 6 wt. %

18 18 Gas storage: Composite pressurized tank Internal pressure: 700 bar but still too voluminous most developed technology

19 kg/m 3 x Liquefaction require too much energy x Loss of efficiency due to evaporation x Voluminous insulation Liquid storage: Cryogenic hydrogen storageOrganic liquid 6,1 wt % x Rest products must be recycled in plants for rehydrogenation x Conversion Yield <<100% x Expensive x Dirty Conclusions Unprofitable from practical and economical point of view at least for on-board storage system

20 20 Solid state hydrogen storage Adsorbed on surfaces metallic glasses carbon-based compound Zeolithe MOFs Structural hydrides

21 21 Zr 52.5 Cu 17.9 Ni 14.6 Ti 5 Al 10 alloy* Solid state hydrogen storage Adsorption on surface Morphology of metallic glass * Cheng 2009 Amorphous storage capacity ~ micro-structure x too high desorption temperature

22 22 Solid state hydrogen storage Adsorption on surface conclusion partially controlled porosity storage capacity x 1315 m²/g 2 wt. % (not enough) Synthesis 1) Anaerobic pyrolysis of wood or other C-based compound 2) * Physical Activation: 950°C + pressurized water steam  small pores * Chemical activation: 450°C + H 3 PO 4  big pores Active carbon

23 23 Solid state hydrogen storage Adsorption on surface Native element No intercalation Graphite 0,3355 nm H-H 0,4059 nm OK x 1315 m²/g  3,3 wt. %

24 24 Solid state hydrogen storage Adsorption on surface Carbon Nanotube Synthesis A) High Temperature vaporisation  condensation Electric arc, T= 6000°C Laser, T= 4800°C SWCNT (zig-zag, armchair, chiral) MWCNT graphite plasma Pyrolysis (750°C) + air MWCNT

25 25 CH 4,C 2 H 2, C 6 H 6, … + Metallic precursor (Co, Ni, Fe, Pt or Pd) Ar 800°C B) CVD Solid state hydrogen storage Adsorption on surface Carbon Nanotube C) Catalysis CO, C 2 H 2, CH 4, … Fe, Ni,Co,… Pyrolysis °C MWCNT/Co SWCNT

26 26 Solid state hydrogen storage Adsorption on surface Carbon Nanotube dissolution du template Al MWCNT

27 27 SWCNT and MWCNT (zig-zag) Carbon-based compound Solid state hydrogen storage Red circle = CNT Blue triangle = Nanostructured carbon sample Adsorption on surface Wt. % too small for on-board storage system

28 28 Solid state hydrogen storage Adsorption on surface Zeolithe Aluminosilicate: [Al x Si y O 2x+2y ] x- Variables Pore size  size of organoamonium Si/Al ratio Na 2 SiO 3 + Al(OH) 3 Low Si/Al ratio (Me 4 N)OH °C High Si/Al ratio (n-Pr 4 N)OH °C Sodalite Na 6 Al 6 Si 6 O 24.2H 2 O ZSM-5 Na 3 Al 3 Si 93 O H 2 O Synthesis

29 29 Solid state hydrogen storage Adsorption on surface Zeolithe Sodalite: Zeolite + H 2 Zeolite-H 2 High P and/or Low T High T and/or Low P 1,1 wt. % < 6 wt. % (not enough) ZSM-5 NaX 70bar, 20°C NaA Xiao-ming Du, ,1 wt.% 0,40 wt.% 0,38 wt.% 0,27 wt.%

30 30 Solid state hydrogen storage Adsorption on surface MOFs Mg(NO 3 ) 2 / DMF linear bpdcH 2 / DMF Autoclave 150°C Huaxue 2011

31 31 N 2 - and H 2 -adsorption isotherms (Mg-MOF, Basolite M050) Solid state hydrogen storage Adsorption on surface MOFs Huaxue 2011 Best MOFs for hydrogen storage:- Mg - smallest pores - 77K

32 Simple Metal hydride: MHx where M = Li, Na, Mg 32 Solid state hydrogen storage Structural HydrolysisMHx + xH 2 O  M(OH)x + xH 2 reversibility protected by US patent Pyrolysis2M + xH 2  2MH x xReversibility for MgH 2 : 300°C, 1 bar x Kinetic too slow 7,6 wt. % x structural deformation

33 33 Complex metal hydride: MXH 4 where X=trivalent element MetalLiNaK T dec1 100°C 300°C T dec2 120°C150°C340°C T dec3 650°C425°C- Wt.% th 10,67,55,7 Wt. % real 7,95,64,3 Global reaction 3 MAlH 4  3 M + 3 Al + 6 H 2 Reversible reaction 3 MAlH 4  3 MH + 3 Al + 9/2 H 2 Solid state hydrogen storage Structural Alanates (MAlH 4 ) Borohydrides (MBH 4 ) 1 st Decomposition: 3MAlH 4  3 H 2 + M 3 AlH 6 + 2Al 2 nd Decomposition: M 3 AlH 6  3/2 H MH + Al 3 rd Decomposition: MH  ½ H 2 + M LiBH 4 : T dec1 = 320°C, T dec2 = 600°C,…., wt.% th = 18,4, wt.% real = 8%

34 34 Intermetallic compounds Solid state hydrogen storage Structural MetalHydrideMass % PdPdH LaNi 5 LaNi 5 H ZrV 2 ZrV 2 H FeTiFeTiH Mg 2 NiMg 2 NiH TiV 2 TiV 2 H Not suitable for on-board storage system

35 35 Solid state hydrogen storage Conclusion Adsorption on surface Small pores (high specific surface) Mg In the structure Best results with complex metal hydride

36 36 Fuel TypeEnergy Content (kJ/g) 1 dihydrogen120 Conclusion ? Pipelines Storage problem !!!

37 37 Conclusion Pressurized Gas Liquid H 2 Solid state storage Adsorption on surface In the structure >700 bar Volume not suitable metallic glasses carbon-based compound Zeolite MOFs Small pores (high specific surface) Mg Best results with complex metal hydride Simple metal hydride Complex metal hydride Intermetallic & perspectives

38 38 Thanks for your attention ! If « Water is life » and « hydrogen generates water »… Does hydrogen generate life?


Download ppt "Frédéric Stevens Thesis seminar LCIS-GREENMat 1. Presentation’s main points Introduction Targets and problems Storage & Distribution method Materials."

Similar presentations


Ads by Google