# 16.1 Light Interference Describe how light waves interfere with each other to produce bright and dark fringes Identify the conditions required for interference.

## Presentation on theme: "16.1 Light Interference Describe how light waves interfere with each other to produce bright and dark fringes Identify the conditions required for interference."— Presentation transcript:

16.1 Light Interference Describe how light waves interfere with each other to produce bright and dark fringes Identify the conditions required for interference to occur

Interference Interference happens when two waves meet.
Constructive interference happens when two waves are in phase (0o, or λ) results a bigger amplitude. Sound: louder Light: brighter Destructive interference happens when two waves are in phase (180o, or ½ λ) results smaller/ no amplitude. Sound: complete silence Light: darkness The example of sound wave interference is beats The example of light wave interference is bright and dark bands.

Monochromatic Interference
Monochromatic means one color When same color of light meets, they can interfere either constructively or destructively. Constructive interference Destructive interference

Waves must be completely in phase or completely out of phase for interference to be observed.
The bright and dark bands observed on the screen is the result of constructive and destructive interference.

16.2 diffraction Diffraction is the spreading of waves into a region behind an obstruction. All waves diffracts Water waves Sound waves Light waves

How much diffraction? The amount of diffraction is determined by the how the wavelength and the size of opening of the barrier compare. When the opening is comparable to the wavelength, most diffraction occurs When the opening is much larger than the wavelength, diffraction is less.

16.3 Laser LASER stands for Light Amplification by Stimulated
Emission of Radiation The emitted laser light is monochromatic and coherent, narrow low diverging beam

Monochromatic and coherent
Monochromatic means one color Coherent light are light waves that are "in phase" with one another. For example, two waves are coherent if the crests of one wave are aligned with the crests of the other and the troughs of one wave are aligned with the troughs of the other. Otherwise, these light waves are considered incoherent.

stimulated emission When a photon (light particle) hits an atom that is already excited, the atom releases a new photon that is completely identical to the incoming photon; same color, going in the same direction. We call this process "stimulated emission". How lasers work (in theory) - YouTube

Class work – today’s date
The diagram shows straight wave fronts passing through an opening in a barrier.  This wave phenomenon is called reflection refraction polarization diffraction Which wave phenomenon makes it possible for a player to hear the sound from a referee’s whistle in an open field even when standing behind the referee? Doppler effect

The diagram shows a wave phenomenon
The diagram shows a wave phenomenon. The pattern of waves shown behind the barrier is the result of reflection refraction diffraction interference A source of waves and an observer are moving relative to each other. The observer will detect a steadily increasing frequency if he moves toward the source at a constant speed the source moves away from him at a constant speed he accelerates toward the source the source accelerates away from him

Which diagram best illustrates wave diffraction?
Which diagram best illustrates wave reflection?  Which diagram best illustrates wave refraction?  Which diagram best illustrates a sound wave? A B C D

example Which diagram best represents light emitted from a coherent light source?  A B D C

What is one characteristic of a light beam produced by a monochromatic laser?
It consists of coherent waves. It can be dispersed into a complete continuous spectrum. It cannot be reflected or refracted. It does not exhibit any wave properties. Which term best describes the light generated by a laser? diffused coherent dispersive longitudinal

A laser beam does not disperse as it passes through a prism because the laser beam is
monochromatic polychromatic polarized Longitudinal A car radio is tuned to the frequency being emitted from two transmitting towers.  As the car moves at constant speed past the towers the sound from the radio repeatedly fades in and out. This phenomenon can best be explained by refraction interference reflection resonance

A wave is diffracted as it passes through an opening in a barrier
A wave is diffracted as it passes through an opening in a barrier. The amount of diffraction that the wave undergoes depends on both the amplitude and frequency of the incident wave wavelength and speed of the incident wave wavelength of the incident wave and the size of the opening amplitude of the incident wave and the size of the opening

Download ppt "16.1 Light Interference Describe how light waves interfere with each other to produce bright and dark fringes Identify the conditions required for interference."

Similar presentations