Download presentation

Presentation is loading. Please wait.

Published byVance Bucher Modified about 1 year ago

1
Rotational Motion AP Physics Lyzinski, CRHS-South

2
Day #1 Sections 10.1 & 10.2

3
C P rs Polar coordinates (r, ) CCW is positive, CW is negative s = arc length = = angular position (measured in radians, not degrees) = Angular displacement Where does it come from? Degree to radian conversion

4
= Angular velocity avg angular velocity = Instantaneous angular velocity = = Angular acceleration avg angular acceleration = Instantaneous angular acceleration = Units of radians per second (rad/s) Units of radians per second squared (rad/s 2 )

5
Translational vs. Rotational Motion CAUTION!!! These equations can only be used if a or are constant!!!!!

6
In-Class Example Problem A rotating wheel requires 3.00 s to rotate through 37.0 revolutions. Its angular speed at the end of the 3.00-s interval is 98 rad/s. What is the constant angular acceleration of the wheel? #6

7
Class Practice A rotating wheel requires 3.00 s to rotate through 37.0 revolutions. Its angular speed at the end of the 3.00-s interval is 98 rad/s. What is the constant angular acceleration of the wheel?

8
In-Class Example Problem #9 The tub of a washing machine goes into its spin cycle, starting from rest and gaining angular speed steadily for 8.00 s, at which time it is turning at 5.00 rev/s. At this point, the person doing the laundry opens the lid and a safety switch turns off the machine. The tub smoothly slows to rest in 12.0 s. Through how many revolutions does the tub turn while its in motion?

9
In-Class Example Problem A certain wheel begins to rotate. Its position varies with time according to the equation A Mr. L original Find the wheel’s average angular acceleration between 5 and 9 sec. Duh!!! The acceleration is constant

10
Day #1 HW Assignment pp Do problems 1-7 all (skip # 6 and #7b)

11
Day #2 Section 10.3

12
r s v Relating Rotational Motion ( and ) to Translational Motion (x, v, and a) Point of rotation Note: As r increases, v and a get larger, while and stay the same.

13
In-Class Example Problem A car accelerates uniformly from rest and reaches a speed of 22.0 m/s in 9.00 s. The tires have diameter 58.0 cm and do not slip on the pavement. (a) Find the number of revolutions each tire makes during this motion. (b) What is the final angular speed of a tire in revolutions per second? #16

14
In-Class Example Problem The drive train of a bicycle is shown. The wheels have a diameter of 67.3 cm and the pedal cranks are 17.5 cm long. The cyclist pedals at a steady cadence of 76.0 rev/min. The chain engages with a front sprocket 15.2 cm in diameter and a rear sprocket 7.00 cm in diameter. (a) Calculate the speed of a link in the chain relative to the bicycle frame. (b) Calculate the angular speed of the bicycle wheels. (c) Calculate the speed of the bicycle relative to the road. #12

15

16
Day #2 HW Assignment pp Do problems 10, 13, 14, 15, 16, 19

17
Day #3 Section 10.4

18
Rotational Energy A solid object is a collection of particles. When the object rotates, each of these particles moves, thus possessing kinetic energy. If we add up all these individual energies, we can find the energy associated with the rotating object. However, as we have learned previously, the velocity of each particle depends on how far the particle is from the axis of rotation. Particles close the axis move slower than particles far from the axis (according to v = r ). Therefore, it might be useful to express each individual kinetic energy in terms of w (which is the same for each particle) instead of v (which changes based on distance from the axis).

19
Notice that w was taken out of the summation because it is the same for every particle, no matter how far the particle is from the axis of rotation. KE of each individual particle The term has been given the name “the Moment of Inertia”, or “ I ”. Therefore, “ I” has units of

20
What is “Inertia”? Remember, in translational motion, an object’s inertia is its “tendency” to want to either remain at rest or moving at a constant velocity. An object’s mass is a direct measure of its inertia. In rotational motion, the individual particles have masses at different distances from the axis of rotation. The Moment of inertia is the rotational analog of mass. It is a measure of how difficult it is to change an object’s motion about its axis of rotation. The closer the mass is to the axis, the easier it is to change its rotational motion. Thus, objects with more of their mass far from the axis rotation have a higher moment of inertia.

21
Translational vs. Rotational Motion (revised)

22
In-Class Example Problem A Penn State Baton Twirler is spinning her 2 ft long baton, which has identical end masses of 300 grams. Assuming the rod itself to be mass-less, find the moment of inertia of the baton if she rotates it about (a) line “a” (which is through the center of the rod) or (b) line “b” (which is 4 inches off-center). A Mr. L original a b

23
In-Class Example Problem #25 v Before After 0.12 kg 60.0 kg 14.0 cm 2.86 m Find the speed that the small mass leaves the Trebuchet. Assume the rod to be mass-less.

24
Day #3 HW Assignment pp Do problems 21, 22, 23

25
Day #4 Section 10.5

26
Calculating Moments of Inertia Notice that the object with more of its mass further away from the axis of rotation has a larger moment of inertia (and thus it will be harder to change it rotational motion)

27
Calculating Moments of Inertia Again, notice that the object with more of its mass further away from the axis of rotation has a larger moment of inertia

28
Using Calculus to find Moments of Inertia First, make sure to figure out what your “tiny pieces” look like. Second, choose the appropriate density function for your “tiny piece” ( for linear, for area, or for volume). Third, use the appropriate density function and solve for dm. Fourth, make sure that dm only has one variable in it, and then plug it into

29
Example: Find the moment of inertia of a thin rod that rotates about its end. L y x dm with thickness dL

30
Example: Find the moment of inertia of a solid cylinder that rotates about its central axis. dr r zero, b/c tiny times tiny equals super tiny dm with thickness dr y r R r Top view of the “thin” cylindrical slices

31
Example: Find the moment of inertia of a sphere about its central axis. zero, b/c tiny times tiny equals super tiny dm with thickness dr R Volume of outer sphere Volume of inner sphere

32
Using the parallel axis theorem to calculate moments of inertia If you know the moment of inertia of an object about a given axis, you can use the equation to find the moment of inertia of this object about any axis parallel to the given axis. The distance between these axis is “D”. D Known: Unknown:

33
Another example of using the parallel axis theorem D = R/2 Known: Unknown: R

34

35
Sections 10.6 & 10.7

36
Torque ( ): The tendency of a force to rotate an object about a given axis. r F F cos F sin d “d” is known as the “moment arm” or “lever arm” ***Notice that only forces perpendicular to the lever arm cause a torque

37
Some notes about TORQUE The units of torque ( ) are N-m The direction of a torque is found using the Right-Hand-Rule –Place your fingers in the direction of the lever arm. –“Slap” in the direction of the force. –Your thumb points in the direction of the torque. –The direction of a torque is found using the Right-Hand-Rule Positive torques are CCW and negative torques are CW. Torque is NOT a force!!! Torque is NOT the same as work. They have the same units, but are VERY different. The net torque on an object is the vector sum of the individual torques. Therefore,

38
How are torques and forces different? Forces can cause a change in motion in translational motion. Forces can cause a change motion in rotational motion. HOWEVER, the further the force is from the axis of rotation, the more “effective” it will be in changing motion. Thus, the force as well as the length of the “lever arm” are important in rotational motion. Therefore, instead of speaking only of a “force”, we speak of a “torque”.

39
Newton’s 2 nd Law (for a particle) The net torque on a particle is proportional to its ANGULAR acceleration. The net force on a particle is proportional to its TANGENTIAL acceleration.

40
Newton’s 2 nd Law (for a rigid body) Every “tiny little” mass (dm) in the rigid body is located at a different distance from the axis of rotation, and this needs to be taken into account. Also, each of these masses is subjected to its own individual “tiny little” torque (d ). To get the total torque, we need to sum up ALL of the “tiny little” ones (by integrating).

41
Mass-less Pulleys M1M1 M=0 M2M2 R R T1T1 T2T2 All a mass-less pulley does is change the direction of a force. Mass-less pulleys don’t really exist (but make calculations easy )

42
Mass-ful Pulleys M1M1 M M2M2 R R T1T1 T2T2 The difference in the tensions causes the net torque which forces the pulley to rotate The pulley in this example is modeled as a solid disk (and thus I = ½ MR 2 )

43
In-Class Example Problem The system below is at rest when the 10 kg mass is released. The pulley is not mass-less, but rather has a mass of 6 kg and a radius of 20 cm. If the surface has a coefficient of friction of 0.2, find the acceleration of the system. A Mr. L original 20 kg 10 kg

44
20 kg 10 kg FfFf T1T1 m1gm1g F N1 m2gm2g T2T2 T2T2 T1T1 a a

45
Translational vs. Rotational Motion (revised)

46

47
Section 10.8

48
Work & energy in Rotational Motion If no external torques or forces are present, then E b = E a.

49
Situations with ONLY K T Situations with ONLY K R Rotating Wheel (where the axis of rotation is fixed)

50
Situation with BOTH K T & K R A Rolling Object (it is rotating and translating at the same time) K due to rotation K due to translation

51
Situation with BOTH K T & K R & U M1M1 M2M2 M3M3 R h H Zero level Solid Disk

52
Situation with BOTH K T & K R & U h Find the velocity of the thin hoop (with radius “R”) at the bottom. R

53

54
Review Day

55

56
Section 10.9

57
Rolling without slipping In order to roll, an object needs to encounter friction, which applies a torque to the object and causes a rotation about its center of mass. If an object does not slip at all while rolling, it is said to undergo PURE rolling motion. For pure rolling motion, These conditions must hold for non-slip rolling.

58
A closer look at an object that rolls but doesn’t slip (part 1) When an object undergoes PURE rotation, every point on the object has the same angular velocity, Therefore, all points that are equidistant from the axis of rotation have the same tangential velocity. v t = R v = 0

59
A closer look at an object that rolls but doesn’t slip (part 2) When an object undergoes PURE translation (which is the equivalent of ALL slip and NO roll), every point on the object has the same velocity, namely the velocity of the center of mass. v CM

60
A closer look at an object that rolls but doesn’t slip (part 3) When an object undergoes PURE Rolling, this is a combination of both ROTATION and TRANSLATION. While every point on the object has the same angular velocity, the contact point with the floor acts as a pivot point. Thus, points on the rotating object that are furthest from the floor have the largest tangential velocity.. v t = v CM + R v CM v CM v = 0

61
Day #8 HW Assignment

62
Review for Test

63
Days 9 thru 11 HW Assignment

64
Day 12 Test Day !!!!

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google