Presentation is loading. Please wait.

Presentation is loading. Please wait.

Spectral Angel Mapper (SAM) Algorithm for Landuse Mapping

Similar presentations

Presentation on theme: "Spectral Angel Mapper (SAM) Algorithm for Landuse Mapping"— Presentation transcript:

1 Spectral Angel Mapper (SAM) Algorithm for Landuse Mapping
Partha Pratim Ghosh Product Specialist, ESRI India Dr. Deb Jyoti Pal Vice President, ESRI India Dr. Pabitra Banik Professor, Indian Statistical Institute, Kolkata Dr. Nilanchal Patel Professor & Head, Birla Institute of Technology, Ranchi

2 Agenda Hypothesis Research Question
Advantages of Spectral Angel Mapper (SAM) Minimum Noise Fraction (MNF) Pixel Purity Index (PPI) n-Dimensional Visualizer (n-D) Endmember Collection Classification Result Conclusion

3 Hypothesis Land use and land management practices have a major impact on natural resources including water, soil, nutrients, plants and animals. Accurate Land use information must be develop for accurate policy making. Digital Image classification is one of the well accepted method to extract Land use information system and many limitation like mixed pixel and noise issues has been observed in the conventional pixel based classification techniques.

4 Research Question Can we use spectra based classification techniques for multispectral image to develop an accurate land use information system? Can we overcome the issues related to mixed pixel specifically observed in case of different type of vegetation? Can we identify crops using spectra?

5 Eastern Part of Eastern Plateau Area (Purulia District of West Bengal)
Study Area Eastern Part of Eastern Plateau Area (Purulia District of West Bengal) Image Landsat ETM+ Image Purulia District, West Bengal India

6 Landcover Land cover is the physical material at the surface of the earth, which naturally cover the earth surface. e.g. grass, asphalt, trees, bare ground, water, etc..

7 Landuse “The arrangements, activities and inputs people undertake in a certain land cover type to produce, change or maintain it is called land use" (FAO, 1997a; FAO/UNEP, 1999). Land use involves the management and modification of natural environment or wilderness into built environment such as fields, pastures, and settlements.

8 Landcover & Landuse (LULC) Map
When only land cover represented through map is known as Land Cover map When only land use represented through map is known as Land Use map When both land cover and land uses are represented through a single map is known as Land Cover / Land Use (LULC) map. e.g. Grass is land cover; pasture and recreational parks are land uses of grass Ref: The origins of the ‘land cover / land use’ couplet and the implications of their confusion are discussed in Fisher et al. (2005).

9 LULC Mapping Techniques
Survey Pixel based Satellite Image Classification using Remote Sensing Software Supervised Parallelpiped Minimum Distance Maximum Likelihood Mahalanobis Distance Unsupervised IsoData K-Means Spectra based Spectral Angel Mapper (SAM) Spectral Information Divergence (SID)

10 Limitation of Pixel Based
Classification Each pixel in the image is compared to the training site signatures identified by the analyst and labeled as the class it most closely "resembles" digitally. Class 1 Vegetation Urban Water Class 2 Urban Vegetation Class 3 Water

11 Advantage of SAM Classification
SAM measures the spectral similarity by calculating the angle between image spectrums to reference reflectance spectra, treating them as vectors in n-dimensional space (Kruse et al., 1993; Van der Meer et al., 1997; Rowan and Mars., 2003). Small angles between the two spectrums indicate high similarity and high angles indicate low similarity. SAM is different from conventional classification methods because it compares each pixel in the image with every endmember for each class and assigns a ponderation value between 0 (low resemblance) and 1 (high resemblance).

12 Spectral Angel Mapper (SAM)
SAM is an automated method for comparing image spectra to individual spectra or to a spectral library (Boardman, unpublished data; CSES, 1992; Kruse et al., 1993a). Image Spectra Laboratory Spectra Image Spectra & Laboratory Spectra are matching The algorithm determines the similarity between two spectra by calculating the spectral angle between them, treating them as vectors in n-D space, where n is the number of bands.

13 Spectral Angel Mapper (SAM)
In a two-dimensional feature space defined by bands x and y, two spectral signatures that represent two different surface objects can be represented as vectors v1, and v2. Then the spectral distance (Euclidean distance) is the length of the line segment d connecting the end points of the two vectors v1 and v2. The spectral angle is the angle between the two vectors v1 , and v2 : i.e., θ (v1, v2)=Cos -1 v1Tv2 v1 v2

14 Spectral Angel Mapper (SAM)
If we linearly scale the length of vectors v1 and v2, by distance r, the spectral distance will be scaled by r. On the other hand the cosine of the angle θ between the two vectors v1 and v2, remains the same. Because of this invariant nature of the cosine of the angle θ to the linearly scaled variations, it becomes sensitive to the shape of the spectral patterns. Sohn et al. (1999)

15 Spectral Angel Mapper (SAM)
Small spectral angel (Cos θ) between the two spectrums indicate high similarity and high angles indicate low similarity. The spectra of the same type of surface objects are approximately linearly scaled variations of one another due to the atmospheric and topographic variations. So the actual vectors in feature space will fall slightly above or below the linearly scaled vectors. But the changes in the cosine of the angle θ caused by these variations remain very small (Sohn et al., 1999).

16 Method Atmospheric Correction of Image Minimum Noise Fraction (MNF)
Pixel Purity Index (PPI) n-Dimensional Visualizer (n-D) Endmember Collection Creation of Unidentified Spectral Library Classification using SAM Class Identification

17 Minimum Noise Fraction (MNF)
MNF transform is used to segregate noise in the data, and to reduce the computational requirements for subsequent processing (Boardman and Kruse, 1994). The MNF transform as modified from Green et al. (1988) and used in ENVI

18 Pixel Purity Index (PPI)
The Pixel Purity Index (PPI) is a means of finding the most “spectrally pure,” or extreme, pixels in multispectral and hyperspectral images (Boardman et al., 1995). The Pixel Purity Index records the total number of times each pixel is marked as extreme. A "Pixel Purity Image" is created in which the DN of each pixel corresponds to the number of times that pixel was recorded as extreme.

19 n-Dimensional Visualizer
Spectra can be thought of as points in an n -dimensional scatter plot, where n is the number of bands. The n-D Visualizer help to visualize the shape of a data cloud that results from plotting image data in spectral space (with image bands as plot axes). We typically used the n-D Visualizer with spatially subsetted Minimum Noise Fraction (MNF) data that use only the purest pixels determined from the Pixel Purity Index (PPI). .

20 n-Dimensional Visualizer
Rotating n-D Visualizer interactively we can select groups of pixels in classes. Selected classes can be exported to us in the classification. n-D Visualizer can be used to check the separability of the classes when the regions of interest (ROIs) as input into supervised . The n-D Visualizer is an interactive tool to use for selecting the endmembers in n-D space.

21 Endmember Collection Endmembers are spectra that are chosen to represent pure surface materials in a spectral image. Endmembers that represent radiance or reflectance spectra must satisfy a positivity constraint (containing no values less than zero).

22 Use the Endmember in Spectral Angel Mapper Algorithm
SAM Classification Use the Endmember in Spectral Angel Mapper Algorithm

23 Class Identification Surveyed villages and markets in Purulia District
District market Major markets Minor markets Railway Road Block Boundary Surveyed villages Legend: Data source: ISI, Calcutta, India

24 Landuse Ecosystem Pattern of Kashipur Block
Class Identification Landuse Ecosystem Pattern of Kashipur Block

25 Result

26 Conclusion Even if Landsat ETM+ is a medium spatial resolution and that sub-pixel contamination cover material is evident while selecting endmembers, it has given good results in SAM. The classification map generated with SAM for Landsat ETM+ show that this method could effectively be used for landuse mapping. With the help of MNF, PPI & n-D Visualizer the mixed pixel issue can be addressed up to certain level

27 References Natural Resource Inventory of Luppi Village, Eastern Plateau of India: Implications for Sustainable Agricultural Development by P. Banik, Ashim Midhya, Sharon Fajardo, P. Suan Kam ---- Journal of Sustainable Agriculture, Volume 28, Issue 2, Page 85 – 100. Poverty Reduction in the Tribal Belt of Eastern India by Christopher Edmonds, Nobuhiko Fuwa, P. Banik ----Asia Pacific Issues, No. 81, Honolulu: East-West Center, August 2006. Rejuvenation of agriculture in India: Cost benefits in using EO products by V. Jayaraman, J.S. Parihar and S.K. Srivastava ----  Acta Astronautica, Volume 63, Issues 1-4, July-August 2008, Pages Watershed externalities, shifting cropping patterns and groundwater depletion in Indian semi-arid villages: The effect of alternative water pricing policies by Bekele Shiferaw, V. Ratna Reddy and Suhas P. Wani ---- Distributed ecohydrological modelling to evaluate irrigation system performance in Sirsa Sistrict, India II: Impact of viable water management scenarios by R. Singh, R.K. Jhorar, J.C. van Dam and R.A. Feddes ---- Journal of Hydrology, Volume 329, Issues 3-4, 15 October 2006, Pages

28 References Patterns and ecological implications of agricultural land-use changes: a case study from central Himalaya, India by R. L. Semwal, S. Nautiyal, K. K. Sen, U. Rana, R. K. Maikhuri, K. S. Rao and K. G. Saxena ----Agriculture, Ecosystems & Environment, Volume 102, Issue 1, March 2004, Pages National spatial crop yield simulation using GIS-based crop production model by Satya Priya, and Ryosuke Shibasaki Ecological Modelling, Volume 136, Issues 2-3, 20 January 2001, Pages The role of GIS and remote sensing in land degradation assessment and conservation mapping: some user experiences and expectations by Godert W. J. van Lynden and Stephan Mantel ----International Journal of Applied Earth Observation and Geoinformation Volume 3, Issue 1, 2001, Pages National spatial data infrastructure - coming together of GIS and EO in India by Mukund Rao, Amitabha Pandey, A. K. Ahuja, V. S. Ramamurthy and K Kasturirangan ---- Acta Astronautica, Volume 51, Number 1, July 2002 , pp (9) Integration of remotely sensed and model data to provide the spatial information basis for sustainable landuse by R. Backhaus and G. Braun ---- Acta Astronautica, Volume 42, Issue 9, May 1998, Pages Spatial-Temporal Pattern and Driving Forces of Land Use Changes in Xiamen by Bin QUAN, , Jian-Fei CHEN, Hong-Lie QIU, M.J.M. RÖMKENS, Xiao-Qi YANG, Shi-Feng JIANG and Bi-Cheng LI ----Pedosphere, Volume 16, Issue 4, August 2006, Pages

29 ?

30 Thank You


Download ppt "Spectral Angel Mapper (SAM) Algorithm for Landuse Mapping"

Similar presentations

Ads by Google