Presentation is loading. Please wait.

Presentation is loading. Please wait.

Summary Talk Few Body 18 Ivo Šlaus R. Bošković Institute and TUNL, Duke U niversity I. 50 years ago II. Paradigm change in the NN studies III. Paradigm.

Similar presentations


Presentation on theme: "Summary Talk Few Body 18 Ivo Šlaus R. Bošković Institute and TUNL, Duke U niversity I. 50 years ago II. Paradigm change in the NN studies III. Paradigm."— Presentation transcript:

1 Summary Talk Few Body 18 Ivo Šlaus R. Bošković Institute and TUNL, Duke U niversity I. 50 years ago II. Paradigm change in the NN studies III. Paradigm change in 3B theories IV. Technology we develop changes us V. Few-body research - results, questions VI. Is there an end for few-body research? VII. Few-body research community VIII. Challenges IX. On being a physicist (Acknowledgement)

2 Nuclear Forces Experiments Few-body theory Gartenhouse ’55 LASL ’53-’69 Signell- Zagreb ’61-’70 Faddeev ‘60 Marshak’58 a nn = -21.7±1 fm OBE 3 H:-18±3, 7 Li(n,tα)n - fusion Bryan- Rice, BNL ’65-’74 Mitra ‘62 Scott ‘69 Sequential (FSI), QFS Amado’63 3NF Caltech, UC Berkeley separable Primakoff- 4 He levels, 3 He? Alt - Holstein ’39 UCLA ’64-’72 Grassberger - n!/ m!(n-m)!nn QFS, NNγ Sandhas ‘67 Fujita- IKO - Ad, Zagreb ‘71 AGS Miyazawa ‘57 BOL-system, 4π emuls. (NN on & off, 3NF)

3 II. Paradigm change in the NN studies Hybrid OBE Phenomenological3NF Kukulin CDBonn AV14 TM Doleschall Shirokov TM99’(χS) AV18UIX IL 1-5 χEFT χPT (Q/Λ) n next-to-next-to-next-to-leading order N3LO R. Machleidt et al, J.J. De Swart et al, V.J. Pandaripandhe et al, U. G. Meissner et al

4

5 TABLE 1χ 2 for various NN potentials compared to NN data YEARN o of dataNijmegen PSA CD-BonnAV18N3LON2LONLO 1992 pp (1787) pp (2932) NN (5990) MeV NN data 1999 npnp p N o ofparametrs

6 TABLE 2Deuteron and some very light nuclei Observ -able Experi- ment CD-BonnAV18JISPKukulin Doleschall N3LO EdEd dd QdQd A D /A S PdPd 4.85%5.76%4.14%5.22%3.6%4.51% EtEt E( 3 He) E( 4 He

7 TABLE 3. BE (MeV) of 3  A  16 with 3NF 3H3H 3 He 4 He 6 He 6 Li 7 Li 8 He 8 Be 16 O Experiment F:CDB+T M AV18+UIX G: AV18+UIX AV18+IL N: AV8’+TM’ JISP N:N2LO NN Full

8 CONCLUSIONS 1)High precision NN potentials → χ 2 = 1.0 to NN data below 350 MeV Δσ T / Δσ L data → χ 2 = ) N3LO needed 3) Correct ordering of energy levels of light nuclei, e.g. 9 Be, 10 B with IL 2 (strong LS) AV18 contains EM AV18 fit to 17 states → ave deviation 7.32 MeV AV18+UIX 2.02 MeV AV18 + IL MeV AV18+IL2 fit to 39 states below 12 C < 0.7 MeV

9 III. Paradigm change in 3B theories 1)Rigorous 3B: Glöckle, Witala, Sauer, Deltuva, Fonseca: Δ + EM 2)GFMC 3)NCSM - sensitivities - excellent fit - evidence for 3NF: energy levels of light nuclei and elastic and inelastic scattering (NB: strong LS in A y and in ordering levels)

10

11

12

13

14 IV. Technology we develop changes our research and us ACCELERATORS: 17,500 = 120 (E > 1 GeV); 1000 “low E” research; 100 synchrotrons more than 7,500 radiotherapy and 7,000 ion implantation IUCF, TUNL, HIγS, KVI, MAMI, CELSIUS, LEGS, RIKEN..Jlab... RIB: ISOLDE, SPIRAL, ISAC, Lln, RIBF, RIBBL ? 14 Be(4ms), 8 He(119ms) C(19s), 18 Ne(17s) COSY, Nuclotron, DAΦNE P*ANDA+FAIR+HESR p* to study c in hadron media DETECTORS: 76 Ge, KamLAND, IceCube (South P).... SALAD, SCANDAL, WASA, ANKE, Crystal ball COMPUTERS: valves/cards → PC (25), supercomputers, DNA (Shapiro), quantum computer

15 V. Few-body research - results, questions V 1. Evidence for 3NF a)Energy levels A ≤ 16, 10 B (3+) +Ili; full N3LO b)PSA of Nd: 4 P J vs NN 3 P J c)σ t (E= MeV) d)σ min (θ=100 o -160 o ) at E = 95 MeV and other E e)K k ij Ep = 22.7 MeV f)Ay, iT 11 Cyy Ep = 197 MeV g)72 kinematic configurations KVI E d = 130 MeV

16 Comparison between 3B and 130 MeV data Force  2 (NN)  2 (NN+3N) AV18+TM’ AV18+UIX CD Bonn+TM’ 

17

18 V 2. Symmetries 1)CKM Δ=1 – (|V ud | 2 + |V us | 2 + |V ub |2 )=0.0043±0.0019, 2 σ! V ud = ± ; V us =0.2272±0.001; V ub =3.96x10 -3 Δ fr = ± 0.011, Δ sr = ± 0.181, Δ fc = ± compatible with unitarity 2)CP violation Elect. dipole: n<6x ecm; e = (0.07±0.07) ecm A non-zero value requires both P and T violation. Neutrino vs antineutrino → lepton sector (neutrino have mass, Σ i m i ≤ 1eV from WMAP)

19 3) CPT invariance - equality of masses and τ of particles and antiparticles: (m K * o – m K o )/m K o < 5x ) Conservation of lepton numbers Neutrinoless double β decay: ΔL = 2: (Z,A) → (Z+2,A)+e - +e - 76 Ge τ > 1.9x10 25 y (CL 90%) 5) Time variation of fundamental constants Δα’/α ≤ 10 -3, (6.4 ± 1.3) /y from quasar line absorption BBN: 2 H and Li primordial abundances np→dγ keV (HIγS + EFT)

20 6) Supersymmetric particle searches neutralino m(χ o i ) > 46 GeV CL 95% chargino m(χ ± i ) > 94 GeV CL 95% selectron m(se) > 73 GeV CL 95% squark m(sq) > 259 GeV CL 95% gluino m(g) > 195 GeV CL 95%

21 7) CD from π ± π o and CSB from m d ≠m u, e d ≠e u 1) Exptl and χ quark model values for scattering lengths a np a pp a nn (fm) Exp   0.3*  0.4 χ QM *Experimental result is –7.813  ) 3 H – 3 He BE difference (keV) Experimental 764 Coulomb 676 Mn≠Mp 14 CSB NN 65  22 CSB 3N 5 Total 760  22

22 3) Nolen – Schiffer anomaly 4) Superratio π + π - on 3 H/ 3 He 5) D(d,α)π o 228 & 232 MeV IUCF 12.7±2.2 & 15.1±3.1 pb vs EFT 23 & 30.8 pb 6) Asymmetry in σ(θ) of H(n,d)π o TRIUMF (17.2 ± 8 st ± 5.5 sy )10 -4 vs EFT ≤ 69x ) CS πN small CSB 8) Λ separation energies in 3 Λ H vs 3 Λ He after removing Coulomb 390 keV 9) ΔA = An - Ap

23  A = A n – A p (in ) Energy (MeV) Experiment 47  22 st  8 sy 59  7 st  9 sy 34.8  6.2 st  4.1 sy 1  exchange  exchange  exchange  exchange 861  -  mixing Total384231

24 TABLE 5Charge Symmetry Breaking (energies in keV, ERP in fm) Experi- ment -- Mn  Mp AV18CDBχ quark cluster  a nn 1.6  ( )  r nn 0.10  H- 3 He 65  22 1S01S All T= Nuclear matter 1S01S All T= (d5/2)  CSB

25

26 V 3. Experimental data “not compatible” with “current theories” 1)Discrepancies between πNN cc from ≠observables 2) 3 He(γ,p)d and 3 He(γ,pp)n at 10.2 and 16 MeV at TERAS Cross sections for the reactions 3 He( ,p)d and 3 He( ,pp)n E(MeV) AV18 AV18+UIX Exptl  ( ,p)d (mb)  0.05  ( ,p)d (mb)  0.05  ( ,pp)n (mb)  0.05  ( ,pp)n (mb)  0.06 Prel MeV linearly polarized  from HI  S at forward angles n energy spectra peak at lower E n ≠ CDB+Coulomb.

27 3) pd capture XS, Axx and Ayy at 140 – 200 MeV RCNP ≠ calc with 3NF 4) σ(θ) 108 – 190 MeV 5) Ay puzzle E≤ 25 MeV & at E = 150 – 190 MeV 6) σ(θ), Ay. Ky y’ and K x x’ at 250 MeV 7) a nn 8) σ(θ) and Ayy at 19 MeV H(d,pp)n in SCRE 9) Space star pd: MeV; nd: MeV 10) pp and nn QFS (25 MeV nn this conf) 11) Axx, Ayy, Axz in H(d,pp)n at 135 MeV/nucleon 12) Lithium problem: 7 Li BBN ≈ 2x observational values

28

29

30

31 E inc (MeV) Type of measurements Analysisa nn (fm) 13 θ n1 =θ n2 = 20.5 o, 28 o, 35 o, 43 o ΔΦ= 0 o, TOF 1, TOF 2, E p Absolute cross section Shape of FSI peak a np measured simultaneously with θ n3 = 55.5 o, 69 o and 83.5 o corresponding to 43 o - 28 o, ΔΦ= 180 o Nijmegen CDBonn, BonnB ±0.13 st ±0.65 sy ± ± θ n1 =θ n2 = 25 o ΔΦ= 0 o, TOF 1, TOF 2, E p Absolute cross section Shape BonnB -14.4± ± θ n1 =55.5 o, θ p = 41.2 o, ΔΦ= 180 o TOF1, Ep Abs. cross section normalized to np- QFS CD-Bonn -16.2± kinematically incomplete θ p =”0 o ” Extended geometry and moderate resolution, absolute cross section CD-Bonn -16.5±0.69 st ±0.52 sy 19 θ n1 =θ n2 = 35.5 o,ΔΦ= 0 o, TOF 1, TOF 2, E p Absolute cross section θ n1 =35.5 o, θ n2 = 73.5 o,ΔΦ= 180 o, TOF 1, TOF 2, E p Absolute cross section θ n1 =51.7 o, θ p = 45 o, ΔΦ= 180 o TOF1, Ep CD-Bonn ±0.2 st ±0.9 sy a np = ±1.0 st ±1.3 sy 25.3 θ n1 =55.5 o, θ p = 41.2 o, ΔΦ= 180 o TOF1, Ep Abs. cross section Normalized to np QFS CD-Bonn -16.3± ± θ n1 =θ p = 32 o, ΔΦ= 0 o TOF1, Ep Abs. cross section CD-Bonn -24.3± 1.1

32

33

34

35 VI. Is there an end for few-body research? Dark”Energy” 73%, Dark”Matter” 22.6%, BM 4.4%; T = 13.7± 0.2 Gy 1) Strange matter, “strangelets”, 3 Λ H to 209 Λ Bi, 6 ΛΛ He, 10 ΛΛ Be and 13 ΛΛ B. Λ Λ interaction weaker than thought before, N, Λ, Σ and Ξ interactions Nijmegen group 2) Exotic states: 4 He(K stop,p)”3baryon”, M = 3117, Γ<21 MeV (?), states around 2 GeV QM predicted not found 3) η-physics, η-mesic nuclei, ηN scattering length; η→ π o γγ Γ ex =0.45±0.09 st ± 0.08 sy eV test for χPT: Γ=0.42±0.2eV;

36 4) Hybrids (qq*g) and Glueballs (gg) Smoking guns J PC = 0 --, 1 -+, Evidence: in pπ - →π - π + π - p at 18 GeV/c 1 -+, 5) Hadron in media could ≠ from free ? 6) Neutron and proton drip-lines, e.g. X( 31 F,x) pb; Efimov effect, Thomas effect; QFR and “2 spectators QFS”; Borromean, samba and tango nuclei 7) NNγ: ”off-shell NN amplitude is as a matter of principle an unmeasurable quantity in NNγ” (1964→75→2000) ( Brayshaw, Noyes, Polyzou and Glöckle: off shell – 3NF) SURPRISES ARE MORE THAN LIKELY

37

38 VII. Few-body research community astrophysics | {particle, nuclear - FB - atomic, condensed matter} | chemistry, biomed FB conferences every 2-3 years since 1967 European FB since 1975, Asian-Pacific since 1999 (typically participants from 20 – 40 countries) FewBody Systems 1986 (W. Plessas) APS FB 330 vs APS NP 2476

39 VIII CHALLENGES 1)Nuclear interaction at N3LO (with 3NF) even N4LO implying CD and CSB 2)More EFT χPT studies required 3)Rigorous 3B, 4B, GFMC, NCSM using NnLO with n ≥ 3 and CD + CSB 4)Relativity 5)Short range: dibaryon – Moscow/Tübingen; p-e EFT potentials should give the same result for all observables 6)Can all EFT parameters be uniquel determined? 7)Latitude in fine tuning PS and parameters?

40 8) π-N scattering data should get πNN cc 9) “Several” potentials - temporary 10) N – hyperon and H – H interaction 11) Mesons, baryons, resonances hybrids, glueballs, etc – topics of conferences: NSTAR, MENU, ETAMESON, e.g. np→dη relativistic descriptions and PWA workshops, eg Abilene, Zagreb, Tuzla 12) Symmetries

41 13) FB systems ideal for “new physics” search - weak charge of p (Jlab) - K*N scatt. length to test χSB in systems with strangenness using DEAR and SIDDHARTA 14) New facilities: Bernal – Polanyi polemics 15) “Discrepancies” solved using “proper” “3NF” or ? However, there are other “discrepancies” 16) Therefore, several approaches desirable 17) Rennaisance of nuclear physics 3B actually more complex !

42 IX. On being a physicist Knowledge-based society Paul Crutzen, Martin Rees John Carey “The Faber Book of Science” A.Toffler Aristotle Rurtherford G. Galilei


Download ppt "Summary Talk Few Body 18 Ivo Šlaus R. Bošković Institute and TUNL, Duke U niversity I. 50 years ago II. Paradigm change in the NN studies III. Paradigm."

Similar presentations


Ads by Google