Download presentation

Presentation is loading. Please wait.

Published byAspen Piper Modified over 2 years ago

1
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES Measuring: Radii of mirrors and lenses Focal points of mirrors, spherical surfaces, thin lenses Focal points and principal planes for thick lenses Comparison to theory: Spherical mirror equation Relation for single spherical surface Lens maker’s formula (thin lenses) Equations for focal length and principal planes (thick lenses) Practicing: Sign conventions for radii and focal points of curved reflecting and refracting surfaces. Topics

2
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES The principle of finding a focal point Reflecting or refracting object Incoming parallel light raysExiting light rays Focal point

3
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES The principle of finding a focal point Reflecting or refracting object Incoming parallel light raysExiting light rays Focal point

4
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES R D x Concave mirror, reflecting side here. Determination of the radius of a spherical mirror

5
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES 180 Polar graph paper …alternative method… R 00 45 90 135 Move mirror until curvature matches the curvature on polar graph paper. then measure R as shown.

6
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES Convex versus concave Concave Mirror : Convex Mirror :

7
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES Convex versus concave Concave Lens : Convex Lens :

8
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES Convex versus concave Plano Concave Lens : Plano Convex Lens :

9
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES Convex versus concave Convex Concave Lens :

10
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES The Spherical Mirror Equation S o : object distance S i : image distance R: radius of curvature of spherical mirror f: focal length of spherical mirror

11
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES Sign Convention for Mirrors Sign +- soso Left of V, real objectRight of V, virtual object sisi Left of V, real imageRight of V, virtual image f Concave mirrorConvex mirror R C right of V, convexC left of V, concave yoyo Above axis, erect objectBelow axis, inverted object yiyi Above axis, erect imageBelow axis, inverted image Sign Convention for Spherical Mirrors C S P F V f sisi R soso

12
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES Refraction on a single spherical surface n1n1 n2n2

13
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES Single Spherical Surface n 1 : index of refraction on one side of the surface n 2 : index of refraction on the other side of the surface R: radius of curvature of the surface f 1 : focal distance in first medium f 2 : focal distance in second medium s o : object distances i : image distance

14
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES Determining the two focal distances for a spherical surface FiFi C V V FoFo fofo fifi Note that Hecht names f 1 and f 2 differently: Instead of f 1 he used f o as in “object focal distance” Instead of f 2 he uses f i as in “image focal distance”

15
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES Sign Conventions (according to Hecht) FiFi C V V FoFo fofo fifi fifi Sign Convention for Spherical Refracting Surfaces and Thin Lenses (Light Entering from the Left) s o, f o +left of V xoxo +left of F o s i, f i +right of V xixi +right of F i R +if C is right of V y o, y i + above the optical axis

16
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES Practical way of making a single spherical surface Semi-circular plastic Rectangular plastic Focus still in the plastic

17
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES Lens Maker’s Equation (for thin lenses) Use proper conventions: R is positive if center of curvature (C) is to the right of vertex (V) R is negative if center of curvature (C) is to the left of vertex (V) R 1 is the curvature on the left side. R 2 is the curvature on the right side.

18
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES Examples R 1 negative (C 1 to the left of V 1 ) C1C1 C2C2 V1V1 V2V2 R 2 positive (C 2 to the right of V 2 )

19
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES Examples R 1 positive (C 1 to the right of V 1 ) C2C2 C1C1 V1V1 V2V2 R 2 negative (C 2 to the left of V 2 )

20
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES Thick Lenses: Measuring focal distances and principal planes

21
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES Thick Lenses: Measuring focal distances and principal planes

22
Modern Optics Lab Experiment 2: REFLECTION AND REFRACTION AT SPHERICAL INTERFACES Thick Lens Equations: You can now use simple lens equations as long as all distances are measured from the principal planes instead of the center of the lens.

Similar presentations

Presentation is loading. Please wait....

OK

Consider Refraction at Spherical Surfaces:

Consider Refraction at Spherical Surfaces:

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on our changing earth Ppt on types of ram and rom Ppt on 5 star chocolate chip Ppt on tourism industry in india Ppt on computer languages popularity Ppt on major domains of the earth for class 6 Ppt on event driven programming vs procedural programming Ppt on image compression using wavelet transform Ppt on 7 wonders of the world 2012 Ppt on content development exercises