Presentation is loading. Please wait.

Presentation is loading. Please wait.

White Dwarf: The Quantum Mechanical Star (ch 39,40) The Universe provides a laboratory for physics under conditions more extreme than any we could replicate.

Similar presentations


Presentation on theme: "White Dwarf: The Quantum Mechanical Star (ch 39,40) The Universe provides a laboratory for physics under conditions more extreme than any we could replicate."— Presentation transcript:

1 White Dwarf: The Quantum Mechanical Star (ch 39,40) The Universe provides a laboratory for physics under conditions more extreme than any we could replicate on Earth. New theory, Quantum Mechanics, under development while Universe already revealing its predicted, strange states of matter. Take the white dwarf, a star the size of the Earth, revealing quantum mechanics in action.

2 A wobble, a mystery. 7.6” 1844-F. Bessel saw that Sirius, brightest star in Sky (mag=-1.5) had a wave-like motion indicating possible, unseen companion 1862-telescope maker A. Clark resolves Sirius B, (18” refractor). Kepler’s law & distance from Center of mass, Sirius B ~ 1 solar mass, but 10 mags or 10 10/2.5 =10,000 times fainter than Sirius A Recall from H-R diagram (next slide) that stars that faint should be red and cool.

3 The Hertzsprung-Russell (H-R) Diagram Modern, Local H-R diagram, 23,000 stars Original: Russell 1914 “Absolute Magnitude” scale of luminosity: M= log L/L , so L 2 =100L 1 M 2 =M 1 -5 Sirius A

4 A wobble, a mystery. 7.6” 1844-F. Bessel saw that Sirius, brightest star in Sky (mag=-1.5) had a wave-like motion indicating possible, unseen companion 1862-telescope maker A. Clark resolves Sirius B, (18” refractor). From Kepler’s law and distance from Center of mass, Sirius B ~ 1 solar mass, but 10 mags or 10 10/2.5 =10,000 times fainter than Sirius A ! Recall from H-R diagram (next slide) that stars that faint were supposed to be red and cool Walter Adams at Mt. Wilson gets spectrum: (Its not in his paper so lets look at an HST Spectrum of Sirius B:

5 B-Sirius!! Sirius-B should have been a cool, red M-type, what is it? HST spectrum Peak color=blue

6 Sirius Problem! Sirius A Sirius B Sirius B is hot (25,000 k) and faint, and so was Eridani B! Eridani B Russell:”I was flabbergasted, baffled trying to make out what it meant” And, if Sirius A and B had same temperature (surface flux), why was B 10,000 fainter? How could Sirius B be so faint?

7 Let’s compare the size of Sirius B to A: R B / R A =(L B / L A ) 1/2 (T A /T B ) 2 and (T A /T B ) 2 ~1, L B / L A =10 -4, so R B / R A ~10 -2 Now R A =1.7 R , so R B =0.01R  =10 4 km So Sirius B has mass of the Sun but size of the Earth! Density=2x10 30 kg/(4  /3 (10 4 km) 3 )=500kg/cm 3, 1000 lb in a sugar cube! styrofoam=0.03 gr/cm 3, Water=1 gr/cm 3, lead=11 gr/cm 3, gold/uranium= 19 gr/cm 3 What could a white dwarf be made of to be a 100,00 times denser than the densest known elements?! In 1914 unknown.. Luminosity = (Surface Area) x ( ) energy emitted cm 2 sec L = 4  R 2  T 4 Remember the Stefan-Boltzmann law: White Dwarf, A Star The Size of the Earth! Sirius A B

8 Question What would happen if held a pinch of white dwarf in your hand? a)it would explode b) you would explode c) it would cut your hand c), assuming a pinch is ~1/10th of a sugar cube, that’s ~100 lb sitting on ~a millimeter of skin

9 How Did the White Dwarf Get So Small? The Incredible Shrinking Star Recall: star is held up by pressure generated by heat which balances gravity. When the furnace goes out, gravity wins, star contracts. Might heat up again and radiate, but eventually star runs out of fuel and keeps shrinking… A white dwarf becomes so compact (I.e., size of Earth, mass of Sun), so gravity at surface (and the support pressure needed) is ~10,000x the Sun’s! So, what is holding the star up after it runs out of fuel for its fire? 1 M  What happens when a star runs out of fuel?

10 Quantum Mechanics to the Rescue! A white dwarf so dense, needs tremendous support pressure to keep from being crushed by its own gravity (gas not hot enough to supply it, and out of fuel anyway). How does it hold itself up? By 1926 the new field of quantum mechanics gives a clue. 1.The Pauli Exclusion Principle (W. Pauli: 1924 empirical, 1925 Explained by QM). No two electrons can occupy the same “quantum state” (location, speed, etc). So electrons must “stack”, they cannot be jammed too close together. This explains the filling of electron shells in chemistry and properties of the periodic table. QM works!

11 Uncertainty 2.Heisenberg Uncertainty principle (1927):  x=positional uncertainty,  v=velocity uncertainty  x  v>h, A particle’s location and speed cannot both be completely confined, there is a limit. So this sets the smallest possible spacing between electrons. i.e.,  x =h/  v Velocity Position e- Let’s get together, where will you be at 8:00? I can tell you where I am going or where I am now, but not both!

12 Degenerate Matter Gravity is crushing but free electrons cannot get closer than  x ~h/  v so they begin to stack into a super-dense state, the gaps in matter (usually 1 in 10 7 states filled) are gone! Even cold, electrons forced to have large velocities because these are unoccupied states (if  x small,  v is big). The tighter its squeezed the more it pushes back! (The smaller it becomes, the harder to compress) Stacking of positions and velocities provides pressure (like jumping jellybeans in a jar) without heat (not thermal pressure)! Called degeneracy pressure (pressure to be different, like anti-peer pressure!) R. Fowler, 1926, Electron Degeneracy Pressure or How stuff moves and creates pressure even when its cold

13 In R. Fowler’s Own Words, “On Dense Matter” 1926: We recognize now that matter can exist in such a dense state that the electrons are not bound in their ordinary atomic orbits but are free…there may come a time when a very curious state of affairs is set up…As the dense matter radiates its energy away…the absolutely final state is one in which there is only one possible configuration left …the star is analogous to one gigantic molecule. Not only has Fowler explained what holds up WD, he has pointed to a way stars can gracefully die (not fire but ice)!

14 Retired Stars or What to do With the Stellar Corpse The degenerate electrons in a white dwarf are moving very fast but the laws of quantum mechanics prevent them from losing or conducting away energy. They provide the stiffness to hold up the white dwarf. Atomic nuclei (positive ions) are not degenerate at this density, they remain in classic, gas state. So they can and do lose energy. So white dwarfs can shine as the nuclei lose energy, slowly cool down, and turn black: Black dwarfs. Size remains the same. Like Earth-sized lumps of coal with the mass of the Sun. Electron degeneracy pressure is the like the scaffolding of a stellar corpse

15 Subrahmanyan Chandrasekhar In 1930 Chandrasekhar was 19, traveling by boat to England and discovered an even stranger consequence of Fowler’s theory of dense (degenerate) matter. The more massive such a star was (imagine adding matter teaspoon at a time or finding a heavier one) the smaller it became, until finally it disappeared! Eddington ridiculed Chandra’s idea in 1935 at an RAS meeting, “there should be a law of nature to prevent a star from Behaving in this absurd way!”. This unfortunately set back the acceptance of Chandra’s work for ~20 years! (he won Nobel 1983)

16 Strange Matter If more matter placed on a white dwarf, gravity--pressure get out of balance, so star contracts,  x gets smaller,  v gets larger which increases pressure. Star gets back to equilibrium but at a smaller size now then before! Can’t keep getting smaller as  v approaches speed of light! At the speed of light (and a change to a relativistic formula). R  0, density  ∞,M  M CH. Thus, there is a maximum mass, the Chandrasekhar mass (limit). Add more beans Jarful gets smaller, beans move faster!

17 Chandrasekhar Limit Degeneracy pressure allows small stars (like the Sun) that end their lives with M<1.4M  to die gracefully, leave a corpse. (Bigger stars can’t get their electrons closer together and jiggle them faster than speed of light). So what happens to stars much bigger than the Chandrasekhar limit when they run our of fuel? How do they hold their massive, bloated corpse up? Chandrasekhar’s Prediction WD Mass and Size limit

18 Supernova! Remember Tyco, Kepler, and Galileo’s “guest star”? By 1930’s indications were that L~10 9 xSun! SN in 1054 mag=-6, visible by day In 1934 Baade and Zwicky suggested that these could be the death of stars too massive to use the “graceful exit” possible for stars below Chandrasekhar’s limit. When a very massive star runs out of fuel it would be unable to hold back gravity by degeneracy pressure and implode smashing electrons and protons to make neutrons. The result: a neutron star (neutron degeneracy allows greater density), a solar mass just 10 miles across! Then the star would rebound and an explosion would result. Demo! Alternatively, if you (or its companion) adds one more teaspoon of matter to a Chandrasekhar-mass white dwarf it might explode. These sounded like crazy ideas, but then how else could you explain a supernova in 1934?

19 Bang! A star explodes… 1987: The galaxy next door

20 Supernovae

21 Poem lyrics of When I Heard The Learn'd Astronomer by Walt Whitman, 1900 When I heard the learn'd astronomer; When the proofs, the figures, were ranged in columns before me; When I was shown the charts and the diagrams, to add, divide, and measure them; When I, sitting, heard the astronomer, where he lectured with much applause in the lecture-room, How soon, unaccountable, I became tired and sick; Till rising and gliding out, I wander'd off by myself, In the mystical moist night-air, and from time to time, Look'd up in perfect silence at the stars.

22 The stars are made of the same atoms as the earth. I usually pick one small topic like this to give a lecture on. Poets say science takes away from the beauty of the stars - mere gobs of gas atoms. Nothing is "mere." I too can see the stars on a desert night, and feel them. But do I see less or more? The vastness of the heavens stretches my imagination - stuck on this carousel my little eye can catch one-million-year-old light. A vast pattern - of which I am a part - perhaps my stuff was belched from some forgotten star, as one is belching there. Or see them with the greater eye of Palomar, rushing all apart from some common starting point when they were perhaps all together. What is the pattern, or the meaning, or the "why?" It does not do harm to the mystery to know a little about it. For far more marvelous is the truth than any artists of the past imagined! Why do the poets of the present not speak of it? What men are poets who can speak of Jupiter if he were like a man, but if he is an immense spinning sphere of methane and ammonia must be silent? -Richard Feynman

23 Question: Do you feel more like Whitman (A) or Feyman (B)?


Download ppt "White Dwarf: The Quantum Mechanical Star (ch 39,40) The Universe provides a laboratory for physics under conditions more extreme than any we could replicate."

Similar presentations


Ads by Google