Download presentation

Presentation is loading. Please wait.

Published byCruz Jesson Modified about 1 year ago

1
Pendulum without friction Limit cycle in phase space: no sensitivity to initial conditions

2
Pendulum with friction Fixed point attractor in phase space: no sensitivity to initial conditions

3
Pendulum with friction: basin of attraction Different starting positions end up in the same fixed point. Its like rolling a marble into a basin. No matter where you start from, it ends up in the drain.

4
Pendulum with friction Adding a third dimension of potential energy: the basin of attraction as a gravitational well.

5
Inverted Pendulum: ball on flexible rod flops to one side or the other Basin of attraction in phase space: two fixed points.

6
Inverted Pendulum: ball on flexible rod Potential energy plot shows the two fixed points as the “landscape” of the basin of attraction.

7
Driven Pendulum with friction Chaotic behavior in time Horizontal version:

8
Driven Pendulum with friction Horizontal version: Chaotic attractor in phase space

9
Double Pendulum Very simple device, but its motion can be very complex (here an LED is attached in a time exposure photo) Simulation at ch?v=QXf95_EKS6E ch?v=QXf95_EKS6E

10
Logistic Equation: a period-doubling route to chaos 0

11
Logistic Equation: a period-doubling route to chaos Positive Feedback Loop: x t+1 = R*x t

12
Logistic Map Starting at x t = 0.2 and R= 2: “fixed point” or “point attractor.” All starting values are in this “basin of attraction” so they eventually end there.

13
Logistic Map Starting at x t = 0.2 and R= 3.1: limit cycle of “period two” (because it oscillates between two values).

14
Logistic Map: cobweb diagram Starting at x t = 0.2 and R= 3.1: limit cycle of “period two” (because it oscillates between two values). In each iteration there are two steps. The first gives the parabola,. The second step we “reset” x t to x t+1 which is the straight line. We see a “fixed point Attractor. Animation:

15
Logistic Map Starting at x t = 0.2 and R = 3.49 we double the period (“bifurcation”): a limit cycle of four values.

16
Logistic Map Increasing R continues to double the period. Starting at x t = 0.2 and R = 4 we see a chaotic attractor. The values will never repeat.

17
Bifurcation Map Where does x “settle to” for increasing R values?

18
Bifurcation Map The logistic map is a fractal: similar structure at different scales. Thus bifurcations happen with increasing frequency: the rate of increase is the Feigenbaum constant (4.7)

19
Water drop model One-frequency drip Two frequency drip Plotting the time interval between one drip and the next: The amount of water in a drip depends on the drip that came before it—this feedback can create complex dynamics. T n+1 TnTn The period-doubling route to chaos: eventually the dripping faucet produces a strange attractor:

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google