Presentation is loading. Please wait.

Presentation is loading. Please wait.

Condition monitoring in an on-ship environment Mike Knowles and David Baglee Institute for Automotive and Manufacturing Advanced Practice (AMAP) University.

Similar presentations

Presentation on theme: "Condition monitoring in an on-ship environment Mike Knowles and David Baglee Institute for Automotive and Manufacturing Advanced Practice (AMAP) University."— Presentation transcript:

1 Condition monitoring in an on-ship environment Mike Knowles and David Baglee Institute for Automotive and Manufacturing Advanced Practice (AMAP) University of Sunderland

2 Who we are - AMAP AMAP is part of the Faculty of Applied Sciences within the University of Sunderland AMAP has been involved in a number of projects in: –Low Carbon Vehicle Manufacturing –Digital Manufacturing –Reliability and Condition Monitoring(Posseidon) –Industrial Maintenance and Efficiency

3 Facilities and Projects Projects –Dynamic Decisions in Maintenance (DYNAMITE) –Intelligent Energy and Maintenance Management –Digital Factory Digital Manufacturing –CAD –CNC –Rapid Prototyping –Dynamometer –Driving Simulators

4 Posseidon Project - Background Progressive Oil Sensor System for Extended Identification ON-Line Failures in marine diesel engines can be costly and can cause extreme inconvenience Current approaches to oil-based condition monitoring involve samples being sent for land based testing.

5 Impact of failures Engine failures can prove to be costly due to delays, time to repair and, in certain cases, environmental costs dues to ships running aground Thus onboard Condition Monitoring was borne out of need.

6 Posseidon The Posseidon projects seeks to address these problems by providing a means to monitor the condition of engine lubricating oil

7 Partners Fundación Tekniker BP Marine OelCheck Martechnic IMM Rina IB Krates University of Sunderland

8 Diesel Engine Fault Modes FaultSymptoms visible in oil properties Corrosive WearHigh increase in wear metals, A strongly decreased TBN compared to the fresh oil. Abrasive (mechanical) wearIncorrect viscosity. Wear particles can be detected optically Magnetic testing can reveal the presence of Iron. DepositsThe TBN of the drip oil can become slightly decreased compared to the fresh oil Additionally the calcium content of the drip oil is decreased compared to the fresh oil. Adhesive (mechanical) wearA strong loss of the viscosity compared to the fresh oil. Magnetic testing can reveal the presence of large amounts of Iron Severe sliding particles are visible optically Soot ContaminationDetection of soot particles by IR methods Increase in Viscosity OxidationIncrease in Viscosity Mixture with another oil typeChange in Viscosity Water ContaminationDetection of Water by IR methods Nitration/Sulfation from Blow by gases Change in base number

9 Oil Analysis Oil analysis at land based laboratories makes advanced analysis possible. Measurements taken include: –Measurement of water content using Karl Fisher titration –Measurement of TBN –Particle counting using optical techniques to detect wear particles –Infrared spectroscopy techniques for measuring oil condition and contaminants. –Magnetic PQ index testing to measure iron particle content –Density –Viscosity –Viscosity Index –Fuel Content –Flash Point

10 Sensor selection SensorOutput IR sensorWater concentration Soot concentration TBN Viscosity sensorViscosity FTIR sensorTBN Water content Insoluble content Optical particle detectorParticles

11 IR Sensor Developed by IMM Monitors water concentration, soot concentration and TBN

12 Viscosity Sensor Developed by IMM Functions on vibrating pin principle

13 Optical Particle Detector Developed by Tekniker The smallest particles which can be identified are around 0.1 micron

14 Role of software There are two levels of functionality for the system, at the most basic level: –Log the data –Display the data –Give simple assessments of oil condition and potential faults –Offer simple guidance messages to the operator. While the more advanced requirements are: –Exploit the multivariate nature of fault conditions –Detect both immediate, fast developing faults and longer-term, incipient fault

15 Technologies used Java –Platform independence XML –Data can be read by spreadsheets etc –Configuration and condition monitoring limits can easily be edited

16 Configuration – Design for Extensibility 0 3000 \xmldata\sensorReadings.xml Posseidon Software Version 2 \xmldata\CMLimits.xml \xmldata\messages.xml \BayesianNetwork\DieselEngine.hkb Water N % Visosity V cSt

17 Bayesian Network An artificial intelligence module was developed based on a Bayesian network to evaluate the probabilities of various faults and component failures

18 Screenshot

19 Testing


21 Posseidon Acheivements The need for the product has been demonstrated The viability of the system has been proved by the development of the prototype system

22 Future Development Hardware and Miniaturisation Display technologies Extensibility and Sensor Selection On-board/Off-board connectivity Design Issues

23 Hardware and miniaturisation Progress has already been made on miniaturising the individual sensors. Bespoke design is now required to produce a reliable and robust unit

24 Display Technologies Robust display technologies exist which support marine communication standards and which offer the desired level of robustness.

25 Extensibility Future Sensor additions – beyond oil –Vibration –Temperature –Thermal Imaging –Exhaust Emissions

26 Onboard/Offboard Connectivity Onboard –NMEA 2000 – Supported by proposed display units –Inter-sensor connectivity – WSNs? Ground to shore connectivity –Cost –Update rate

27 Design issues What info is displayed? –Use of software ‘mock-ups’ to obtain feedback from engineering personnel Resilience –Use of bespoke test rigs to simulate vibration, thermal conditions etc.

28 Proposed Development Plan Create a consortium of interested parties who can support development Produce refined prototype –Smaller Sensors –No Laptop –Refined Software developed in collaboration with industry

29 Support needed: –Direct input from Shipping operators –Sensor/instrumentation companies.

30 Acknowledgements This work was supported by the EU Framework Programme 6 under the Posseidon project.

31 Thank you for listening Questions?

Download ppt "Condition monitoring in an on-ship environment Mike Knowles and David Baglee Institute for Automotive and Manufacturing Advanced Practice (AMAP) University."

Similar presentations

Ads by Google