Presentation is loading. Please wait.

Presentation is loading. Please wait.

The multispecies coalescent: implications for inferring species trees James Degnan 21 February 2008.

Similar presentations


Presentation on theme: "The multispecies coalescent: implications for inferring species trees James Degnan 21 February 2008."— Presentation transcript:

1 The multispecies coalescent: implications for inferring species trees James Degnan 21 February 2008

2 Outline 1. Background --gene trees vs. species trees --coalescence and incomplete lineage sorting 2. Inferring species trees --Concatenation --Consensus Trees 3. Conclusions

3 Population Genetics and Phylogenetics Population genetics: traditionally used to analyze single populations. Phylogenetics: What is the best way to infer relationships between populations/species? Graphic by Mark A. Klinger, Carnegie Museum of Natural History, Pittsburgh

4 Desirable properties of species tree estimators 1. Statistical consistency (sample size = # of genes) 2. Efficiency 3. Robustness to violations in assumptions

5 Bridging the popgen/phylo divide Closer integration of population-genetic factors in phylogenetics, including further insights into gene-tree/species tree, and horizontal gene transfer. --from Mike Steels website, My pick for five directions in phylogenetics that will grow in the next five years (2006). Incorporation of explicit models of lineage sorting will be needed for continued development of phylogenetic inference near the species level. –Maddison and Knowles (2006).

6 The coalescent process Past Present

7 One population

8 Multiple populations/species Present Past

9 Gene tree in a species tree

10 Model species tree with gene tree A B C D The gene tree is a random variable. The gene tree distribution is parameterized by the species tree topology and internal branch lengths.

11 How can we compute probabilities of gene trees given species trees? - General case solved by Degnan and Salter (2005) and implemented by program COAL. Also allows individuals sampled in species i. -Under a coalescent model, probabilities for gene trees with three species were derived by Nei (1987): 1-(2/3)e -T -Probabilities for the gene tree to match the species tree topology for 4 and 5 species given by Pamilo and Nei (1988). -All 30 species tree/gene tree combinations for 4 species given by Rosenberg (2002).

12 Definition: a coalescent history is a list of the populations in which each coalescent event occurs. A B C D This coalescent history: (1,3,3) Other coalescent histories: (2,3,3), (3,3,3)

13 Gene tree probabilities

14 internal branches of S combinatorial enumeration, complexity only known in special cases u coalesce into v probability coalescences are consistent with g branch length

15 Data from Ebersberger et al Mol. Biol. Evol. 24: Theoretical distribution based on parameters from Rannala and Yang, Genetics 164: t/N =

16 y x

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 Definition: a gene tree which is more probable than the gene tree matching the species tree is called an anomalous gene tree (Degnan and Rosenberg, 2006). Theorem 1. For the asymmetric species tree topology with four species and for any species tree topology with more than four species, there exist branch lengths such that at least one gene tree is anomalous (Degnan and Rosenberg, 2006).

38 Is species tree inference consistent in this setting? 1. Concatenation? 2. Consensus?

39 Species Tree inference concatenation Species Trees are often estimated by concatenating several gene sequences and analyzing as one (data from Chen and Li, 2001). Gene 1 Human CTTGAATAATTTTTAC Chimp CTTCAATAATTTTTAC Gorilla TTTGAATAATTTTTAC Orang CTTGAATAATTTTTAT Gene 2 TAGAGTTTCCTTGTGGTG TAGAGTTTCCTTGTGGTA CAGAGTTTCCTTGTGGTC Gene 3 CGGTTT TGGTTT CRGTTT

40 Concatenation and gene tree discordance How does concatenation perform when sequences are generated from different topologies? CGGTTT TGGTTA TAGTTA CGATTA TGATTA TAATTT TGAATT TGCTAT CCCTAT Species tree: y = 1.0, x = 0.05 y x Simulated gene trees concatenated sequence CGGTTT TGGTTA TAGTTA CGATTA TGATTA TAATTT TGAATT TGCTAT CCCTAT

41 Trees inferred from concatenated sequences (Kubatko and Degnan, 2007) y = 1.0, x = 0.05 Number of genes

42 Is species tree inference consistent in this setting? 1. Concatenation? No. 2. Consensus?

43 Consensus (majority-rule)

44 Types of consensus trees Greedysort clades by their proportions. Accept the most frequently observed clades one at a time that are compatible with already accepted clades. Do this until you have a fully resolved tree. Majority ruleconsensus tree has all clades that were observed in > 50% of trees. R*for each set of 3 taxa, find the most commonly occurring triple e.g., (AB)C, (AC)B or (BC)A. Build the tree from the most commonly occurring triple. (AB)D, (CD)B are two rooted triples

45 Asymptotic consensus trees Consensus trees are usually statistics, functions of data like x-bar. Definition: an asymptotic consensus tree is the tree that is obtained by computing the consensus tree using topology probabilities from the multispecies coalescent model. Motivation: if there are a large number of independent loci, observed gene tree, clade, and rooted triple proportions should approximate their theoretical probabilities.

46 Simulated gene trees Greedy consensus tree

47

48 Simulated gene trees Greedy consensus tree R* consensus tree Greedy consensus tree

49 Majority-rule: unresolved zone

50 Too-greedy zone

51 Is species tree inference consistent in this setting? 1. Concatenation? No. 2. Consensus? Yes (R*), no for greedy and majority-rule.

52 Are consensus trees inconsistent estimators of species trees? Theorem 2. (i) Majority-rule asymptotic consensus trees (MACTs) do not have any clades not on the species tree. (ii) Majority-rule unresolved zones exist for any species tree topology with n 3 species. Theorem 4. R* asymptotic consensus trees (RACTs) always match the species tree. Theorem 3. Greedy asymptotic consensus trees (GACTs) can be misleading estimators of species trees for the 4-species asymmetric tree and for any species tree with n > 4 species.

53 What about finite samples? If you sample 10 loci, you could have: All 10 match the species tree 9 match the species tree, 1 disagrees 8 match the species tree, 2 disagree, etc. You can consider gene trees as categories and use multinomial probabilities for the probability of your sample

54 R* consensus, y = 0.4, x = 0.6

55 Conclusion Coalescent gene tree probabilities can be used to prove or disprove the statistical consistency of species tree estimators.

56

57 Number of genes Probability R* consensus, y = x = 0.1

58

59


Download ppt "The multispecies coalescent: implications for inferring species trees James Degnan 21 February 2008."

Similar presentations


Ads by Google