Download presentation

Presentation is loading. Please wait.

Published byMarissa Grapes Modified over 3 years ago

1
EEE 340Lecture 061 2-9 Curl of a vector It is an axial vector whose magnitude is the maximum circulation of per unit area as the area tends to zero and whose direction is the normal direction of the area when the area is oriented so as to make the circulation maximum. curl a measure of the circulation or how much the field curls around P. (2-125)

2
EEE 340Lecture 062 (2-135)

3
EEE 340Lecture 063 In order to attach some physical meaning to the curl of a vector, we will employ the small “paddlewheel”. Let the vector field be a fluid velocity field. Place the small paddlewheel in this velocity field. The paddlewheel axis should be oriented in all possible directions. The maximum angular velocity of the paddlewheel at a point is proportional to the curl, while the axis points in the direction of the curl according to the right-hand rule. If the paddlewheel does not rotate, the vector field is irrotational, or has zero curl.

4
EEE 340Lecture 064 or Cartesian coordinates Cylindrical coordinates (2-136) (2-138) (2-135)

5
EEE 340Lecture 065 In spherical coordinates Properties of the curl 1) The curl of a vector is another vector 2) The curl of a scalar V, V, makes no sense 3) 4) 5) 6) (2-139)

6
EEE 340Lecture 066 Example 2-21 Show that if a). b). Solution a). Cylindrical coordinates

7
EEE 340Lecture 067 b). Spherical coordinates

8
EEE 340Lecture 068 Irrotational or Conservative field.

9
EEE 340Lecture 069 2-10 Stokes’s theorem Proof: The circulation of around a closed path L is equal to the surface integral of the curl of over the open surface S bounded by L, provided that and are continuous on S. (2-143)

10
EEE 340Lecture 0610 Example 2-22 Given verify Stoke’s theorem over a quarter-circular disk with a radius 3 in the first quadrant Solution therefore

11
EEE 340Lecture 0611 In Example 2-14

12
EEE 340Lecture 0612 2-11 Two Null Identities Identity 1 Gravity field Electro static field Identity 2

13
EEE 340Lecture 0613 2-12 Helmholtz’s Theorem Helmholtz’s Theorem: A vector field (vector point function) is determined to within an additive constant if both its divergence and its curl are specified everywhere.

Similar presentations

OK

Chapter 11 Angular Momentum. Introduction When studying angular motion, angular momentum plays a key role. Newton’s 2 nd for rotation can be expressed.

Chapter 11 Angular Momentum. Introduction When studying angular motion, angular momentum plays a key role. Newton’s 2 nd for rotation can be expressed.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on area of parallelogram and triangle File type ppt on cybercrime news Ppt on seven segment display tutorials Free ppt on french revolution Ppt on spiritual leadership in the home Ppt on dressing etiquettes Download ppt on phase controlled rectifiers Ppt on audible and inaudible sound Ppt on recycling of solid waste Ppt on cross docking warehouse