Download presentation

Presentation is loading. Please wait.

Published byErnesto Sherburn Modified about 1 year ago

1
2015 Mar. 18 Seminar @ Hiroshima Univ. Probing high scale SUSY in low energy FCNC Kei Yamamoto （ Niigata Univ. ⇒ KEK from this April ） Collaborated with Morimitsu Tanimoto (Niigata Univ.) arXiv: 1503.XXXX

2
Standard model has been established ? ・ Higgs discovery [PDG 2014] [CMS 1309.0721]

3
SM explains CP violation of K and B mesons successfully We examine the sensitivity of High Scale SUSY in the CP violations of K and B mesons Standard model has been established ? Also, no signals of lepton flavor Flavor side ⇒ see briefly

4
CP symmetry : Symmetry between particle and antiparticle Neutral meson mixing CP violation have been observed in K and B mesons decays. These neutral mesons oscillate between particle and antiparticle. Box diagram of CP violation C (charge) transformation P (parity) transformation CP symmetry is violated

5
CP violation If CP symmetry is conserved, the decay rate of neutral meson and should be equal. 2 CP violation 2 : mixing : decay f : CP conjugate state CP violation CP asymmetry

6
フレーバー固有状態と質量固有状態のずれ フレーバーを変える 1 つの複素位相 CP 対称性を破れを引き起こす Mass eigenstate basis CP violation in SM Deviation between flavor eigenstate and mass eigenstate ⇒ change flavor One complex phase ⇒ induce CP violation CKM matrix (wolfenstein parametrization, λ(Cabbibo angle)~0.2)

7
Unitarity ： Im Re K meson system （ d-s system ） 三辺が同オーダーの B 中間子系が最も見やす い（ Im が大きい） CP violation in SM CKM matrix The unitarity triangle B meson system （ d-b system ） Bs meson system （ s-b system ）

8
Unitarity ： Im Re K meson system （ d-s system ） 三辺が同オーダーの B 中間子系が最も見やす い（ Im が大きい） CP violation in SM CKM matrix The unitarity triangle B meson system （ d-b system ） Bs meson system （ s-b system ） These angles and lines of UT are determined by various measurements of B and K meson ⇒ Belle, Babar,,

9
SM explains CP violation of K and B mesons successfully No significant deviation, but - a number of tensions - future measurements can improve a lot New Physics contributions to loop processes are still possible We examine the sensitivity of High Scale SUSY in the CP violations of K and B mesons Standard model has been established ? Also, no signals of lepton flavor

10
Physics beyond SM ・大統一理論 ・暗黒物質の存在 ・宇宙のバリオン数非対称性 ・ニュートリノ質量 ・階層性問題 ・ … Neutrino oscillations Dark matter （ 25% of the Universe ） Dark energy Baryon asymmetry of universe Hierarchy problem We need new physics(NP) beyond SM

11
Example of NP : Supersymmetry (SUSY) 2HDM Symmetry between fermion and boson スクォーク グルイーノ Spin 1 / 2 0 Spin 1 1 / 2 19 8 レプトン - ino S- Spin 1/2Spin 1 Spin 0 Spin 1/2 Spin 0 Squark Slepton Gluino Bino Wino Higgsino Neutralino Chargino }

12
Direct search (e.g. ATLAS, CMS) @ High energy Produce new particle directly with high energy collider High Energy Low Energy How to search NP Indirect search (e.g. LHCb, Belle) @ Low energy Probe the effect NP in low energy physics induced by quantum correction

13
Direct search (e.g. ATLAS, CMS) @ High energy Produce new particle directly with high energy collider Indirect search (e.g. LHCb, Belle) @ Low energy Probe the effect NP in low energy physics induced by quantum correction High Energy Low Energy ⇒ Indirect search for NP is important There are no evidence for new physics How to search NP

14
・ Lepton universality ・ （ g−2 ） μ ・ EW precision test １： See processes forbidden or suppressed in SM ・ Rare decay 、 CPV ・ μ→ ｅ γ 、 τ→μγ 、 τ→ ｅ γ 、 ・ Electric magnetic moment （ EDM ） d e 、 d N ・ Proton decay 王道 2 ：精密測定による標準模型との差 Flavor physics How to search NP indirectly 2 ： Precise measurement

15
・ Lepton universality ・ （ g−2 ） μ ・ EW precision test １： See processes forbidden or suppressed in SM ・ Rare decay 、 CPV ・ μ→ ｅ γ 、 τ→μγ 、 τ→ ｅ γ 、 ・ Electric magnetic moment （ EDM ） d e 、 d N ・ Proton decay Flavor physics How to search NP indirectly 2 ： Precise measurement

16
Exp. SM [The CKMfitter,2011] Time dependent CP asymmetry in [LHCb@3fb -1, 1407.2222] [LHCb@1fb -1, 1304.2600] Exp. SM [M. Bartsch et al.. 0810.0249] Progress of B physics measurements Time dependent CP asymmetry in The LHCb collaboration has reported new data of the CP violation of Bs meson. UT @ Bs βsβs SM consistent

17
In SM, - loop suppressed - CKM suppressed :BR |V tb * V tq | 2 - helicity suppressed :BR m μ 2 /m Bs 2 ⇒ Rare decay ： BR(Bs→μμ) SM 〜 10 -9 BR(B→μμ) SM 〜 10 −10 Progress of B physics measurements Rare decay of Bs meson

18
Progress of B physics measurements Rare decay of Bs meson [Bobeth et al.1311.0903] [LHCb+CMS] SM consistent

19
Progress of B physics measurements Rare decay of Bs meson [Bobeth et al.1311.0903] [LHCb+CMS] SM consistent New data of CP violation of Bs are consistent with SM. ⇒ Constrain to NP

20
ＮＰへの感度 SM NP loop suppressedCKM suppressed Loop process Sensitivity to NP It has sensitivity to high scale NP

21
NP SM NP model depend Sensitivity to NP Neutral meson mixing

22
Effective Theory Wilson coefficient b c - d u W b c d - u g Searching for SUSY particle at LHC By integrating out heavy particle which mediate, B transition is described in terms of interaction between light particles. Dim.6 Local operator ex) b → cud -

23
49 9 Wilson coefficient b c - d u W b c d - u g Searching for SUSY particle at LHC By integrating out heavy particle which mediate, B transition is described in terms of interaction between light particles. Dim.6 Local operator ex) b → cud - Wilson coefficients have both contributions, SM and New physics. Effective Theory

24
i : index of mode Effective Hamiltonian Decay amplitude Ex) Hadronic matrix element Effective Theory

25
Flavor physics ⇔ SUSY search by LHC CP asymmetry in B 0 meson Time dependent CP asymmetry Semileptonic CP asymmetry ε K (CPV of K meson) Kaon rare decay Neutron EDM ~ m q, m g = 10 TeV & 50 TeV ~ High scale SUSY K L → π 0 νν K + → π + νν εKεK SUSY search and Flavor physics Our motivation No evidence of SUSY, and SUSY scale may be much higher than 1 TeV Indirect Search for SUSY is needed ⇒ Flavor physics We examine the sensitivity of High Scale SUSY in the CP violations of K and B mesons

26
Contents SUSY setup Squark flavor mixing Squark mass spectrum Numerical analysis CP asymmetry in B meson decays chrome EDM of the strange quark ε K and Kaon rare decay ←new

27
Contents SUSY setup Squark flavor mixing Squark mass spectrum Numerical analysis CP asymmetry in B meson decays chrome EDM of the strange quark ε K and Kaon rare decay ←new

28
： complex ⇒ new CP violating phase 超対称標準模型での CP 対称性の破れ ほぼうまく説明できている ※クォーク質量行列と同時対角化できるとは限らないので非対角成分が残る SM ： The off diagonal elements in the CKM matrix MSSM ： The off diagonal elements in the squark mass matrices The origin of flavor violation ↑ It contains the new CP-violating phase Squark flavor mixing

29
Horyuu The soft squark mass matrices contain the CP-violating phases, which contribute to the flavor changing neutral current (FCNC) with the CP violation. SM ： The off diagonal elements in the CKM matrix MSSM ： The off diagonal elements in the squark mass matrices The origin of flavor violation ↑ It contains the new CP-violating phase We work in the basis of mass eigenstate. Mixing matrix The magnitude of mixing parameters s ij ⇨ The magnitude of the SUSY contributions ※ 1st and 2nd family squarks are degenerate: s 12 =0

30
SUSY SM Squark flavor mixing Mass difference Quark squark Gluino interaction

31
Squark mass spectrum We should consider SUSY particle spectrum, which is consistent with Higgs Discovery. SUSY breaking scale Λ = 10 17 GeV, 10 16 GeV SM-SUSY matching scale Q 0 =10, 50 TeV SM scale m H, 126 GeV Running soft masses in SUSY Running Higgs coupling in SM λ, m 2 H 1, H 2 H SM Q0Q0 mHmH Λ Taking universal soft parameters at SUSY breaking scale Λ [M.Tanimoto and KY (2014)]

32
H1 H1 bL bL bRbR d L,R, s L,R H2 H2 RGE running result @Q 0 =10TeV gluino tR tR

33
※ Parameter case1 : 0.5 case2 : λ (Cabibbo angle) [Delgado, Garcia, Quiros, PRD90(2014)015016 ] squark and gaunino mass mixing parameters random tanβ and L-R mixing angle : m 3 = m q m g 〜 m q ~~ ~ 11 5 m q [TeV] 10 50 tanβ 10 4.5 ~ Xt θdθd θuθu ： free parameter For simplicity, [M.Tanimoto and KY (2014)]

34
※ Parameter case1 : 0.5 case2 : λ (Cabibbo angle) [Delgado, Garcia, Quiros, PRD90(2014)015016 ] squark and gaunino mass tanβ and L-R mixing angle : m 3 = m q m g 〜 m q ~~ ~ 11 5 m q [TeV] 10 50 tanβ 10 4.5 ~ Xt θdθd θuθu [M.Tanimoto and KY (2014)]

35
Parameter

36
LR mixing angle 0.0061 0.0023 0.0137 0.00093 0.00070 0.00056 θd θu θe 10TeV50TeV Parameter mixing parameters random ： free parameter For simplicity,

37
Contents SUSY setup Squark flavor mixing Squark mass spectrum Numerical analysis CP asymmetry in B meson decays chrome EDM of the strange quark ε K and Kaon rare decay

38
ΔF=2 process K-K, B-B, Bs-Bs mixing: ― ― ― The gluino-sbottom-quark interaction observed value is very sensitive, so it becomes a severe constraint. + Standard model Time dependent CP asymmetry : SM + SUSY Meson mixing & Time dependent CP asymmetry

39
ΔM B /ΔM B SUSY SUSY+SM ΔM Bs /ΔM Bs SUSY SUSY+SM We scan s ij randomly in the region of 0 ～ 0.5 with taking |s ij L |= |s ij R | Sin(2Φ 1 ) SUSY /Sin(2Φ 1 ) SUSY+SM Sin(2Φs) SUSY /Sin(2Φs) SUSY+SM S 13 We scan δ ij randomly in the region of 0 ～ 0.5 S 23 S 13 S 23 φ 1 =β 6% 0.4% 6% 8%

40
S 13 S 23 40% ⇒ We scan δ ij randomly in the region of 0 ～ 0.5 εK /εKεK /εK SUSY SUSY+SM sensitiv e SM component Taking account of Gluino squark interaction

41
Time dependent CP asymmetry Experimental results [HFAG,2012] Both CP violations come from CP phase in the mixing. SM prediction Time dependent CP asymmetry [S. Khalil,E. Kou(2003), A.L. Kagan(2002), M.Endo,S.Mishima,M.Yamaguchi (2005)] depends on S 23 Difference of sign comes from parity of final state SUSY contribution

42
C 8g /C 8g SUSY SM S ηK vs. S ΦK S ΦK /S η’K Q 0 =10 TeV tanβ=10 Our predictions SM insensitive… S 23 0.2% Time dependent CP asymmetry

43
Experimental results CP asymmetry in the semileptonic decay in mixing SM + SUSY [LHCb 2012 06] Experimental results [A.Lenz and U.Nierste, arXiv:1102.4274 [hep -ph]] [PDG 2012] SM predictions Semi-leptonic CP asymmetry depend on, depend on

44
Our predictions SM a sl vs. a sl s d a sl d insensitive… a sl d < 1×10 -3, a sl s < 5 × 10 -5 Semi-leptonic CP asymmetry

45
Upper bound S 23 Q 0 =50 TeV tanβ=3 Chromo-EDM of strange quark [K.Fuyuto, J.Hisano and N.Nagata, 2013] sensitiv e |d s C |< 4 × 10 -25 cm

46
Q 0 =50 TeV tanβ=3 Chromo-EDM of strange quark vs. ε K

47
Q 0 =10TeV ➡ Q 0 =50TeV @ Q 0 =50TeV Chromo-EDM of strange quark vs. ε K

48
Contents SUSY setup Squark flavor mixing Squark mass spectrum Numerical analysis CP asymmetry in B meson decays chrome EDM of the strange quark ε K and Kaon rare decay

49
Clean theoretically : theoretical uncertainty 〜 2 ％ K L → π 0 νν and K + → π + νν Rare decay : BR SM 〜 10 -11 [Buras et all, 2006] ⇒ Sensitive to New Physics

50
CP - CP + K L → π 0 νν K + → π + νν Hadronic matrix element, isospin relation K to pinunu Relation K to pinunu deference K → πνν in SM Direct CPV

51
CP - CP + K L → π 0 νν K + → π + νν Hadronic matrix element, isospin relation K to pinunu Relation K to pinunu deference K → πνν in SM Future (20XX) ρ η K L → π 0 νν K + → π + νν Direct CPV

52
Clean theoretically : theoretical uncertainty 〜 2 ％ K L → π 0 νν and K + → π + νν Rare decay : BR SM 〜 10 -11 [Buras et all, 2006] ⇒ Sensitive to New Physics ←KOTO experiment @J-PARC Experiment

53
[yamanaka, Flavor in new physics @ J-PARC (2015) ]

54

55
SUGRA model with MFV MSSM [T.Goto, Y,Okada and Y.Shimizu(1998)] It is known there are no large enhancement in K → πνν decay in the Minimal flavor violation(MFV) scheme @ Squark mass < 600 GeV, Gaugino mass < 600 GeV with non-MFV [A.J.Buras,et al (2005)] @ Squark mass = 600 GeV, Gluino mass = 1 TeV, δ 13, δ 23 ~ 0.3 It is known there are no large enhancement in K → πνν decay in the Minimal flavor violation(MFV) scheme K → πνν and ε K in MSSM

56
exchange In the MSSM exchange SM K → πνν and ε K in MSSM exchange

57
Numerical analysis results @ Q 0 =10 TeV K→πνν : Chargino dominant ε K : Gluino dominant

58
Numerical analysis results @ Q 0 =10 TeV @s d =s u =0.1 @s d =0, s u =0.1 @s d =s u =0.1 with 90%C.L. |ε K | exp constraint 1σ exp. bound Grossman-Nir bound SMSM 〜 8 × SM 〜 3 × SM at most 30% at most 3%

59
s d & s u dependense Numerical analysis results @ Q 0 =10 TeV 1σ exp. bound 〜 100 × SM 〜 20 × SM

60
@s d =s u =0.3 @s d =0, s u =0.3 @s d =s u =0.3 Numerical analysis results @ Q 0 =50 TeV 1σ exp. bound Grossman-Nir bound SMSM 〜 2 × SM at most 10% at most 1.5%

61
Summary We have studied the contribution of the high-scale SUSY to B and K meson systems We consider the high-scale SUSY at 10-50 TeV scale in the framework of the mass eigenstate basis of the SUSY particles assuming the non-minimal squark (slepton) flavor mixing We expect the measurement of these processes will be improved by the J-PARC KOTO experiment (and CERN NA62 experiment) in the near future. If large NP contribution to both and come out, it may suggest the contribution of chargino and gluino are comparable. Even if the NP contribution to is small, can be enhanced. As results, CP asymmetry and mass difference of B meson are insensitive to high scale SUSY is most sensitive even if the SUSY scale is higher than 50 TeV Chrome EDM has a sensitivity at SUSY scale 10-50TeV

62
Summary Intensity frontier is crucial to probe BSM ! [Iijima, Flavor of new physics @ J-PARC (2015) ]

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google