Download presentation

Presentation is loading. Please wait.

Published byHadley Tremble Modified over 2 years ago

2
Why/When is Taguchi Method Appropriate? Friday, 25 th May 2001 Tip #6 Using Orthogonal Arrays for Generating Balanced Combinations of NoIsE Factors

3
Taguchi Method Using Orthogonal Arrays for Generating Balanced Combinations of NoIsE Factors In many applications, one can identify several NoIsE factors (with 2- or 3-levels) that could be included during the OA-based experiments 2 or 3 Noise Factors => use ‘all’ factorial combinations more than 3 Noise Factors => are too many –‘all’ factorial combinations are too many –‘balanced’ combinations using OA just the right number (between 4 to 9) e.g. L4 (3 NF with 2-levels) 4 combinations L8 (upto 7 NF with 2-levels) 8 combinations L9 (upto 4 NF with 3-levels) 9 combinations Tip #6

4
Taguchi Method Using Orthogonal Arrays for Generating Balanced Combinations of NoIsE Factors In many applications, NoIsE one can identify several NoIsE factors (with 2- or 3-levels) that could be included during the OA- based experiments 2 or 3 Noise Factors => use ‘all’ factorial combinations (next slide)

5
L9 expt. with 2 Noise Factors (2-levels each) (7) Taguchi Method for Q&R : L9 expt. with 2 noise factors Expt.No. 12 3 4 5 6 7 8 9 1 1 1 2 2 2 3 3 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 2 3 1 1 2 3 2 3 1 3 1 2 E1F1E1F1E1F1E1F1 E1F2E1F2E1F2E1F2 E2F1E2F1E2F1E2F1 E2F2E2F2E2F2E2F2 Y 11 Y 12 Y 13 Y 14 Y 21 Y 22 Y 23 Y 24 Y 31 Y 32 Y 33 Y 34 Y 41 Y 42 Y 43 Y 44 Y 51 Y 52 Y 53 Y 54 Y 61 Y 62 Y 63 Y 64 Y 71 Y 72 Y 73 Y 74 Y 81 Y 82 Y 83 Y 84 Y 91 Y 92 Y 93 Y 94 Noise Measurements to Capture Noise ABCD Control Factors Control Factors E1F1E1F1E1F1E1F1 E1F2E1F2E1F2E1F2 E2F1E2F1E2F1E2F1 E2F2E2F2E2F2E2F2 E and F are noise factors with 2 level each ‘all’ 4 combinations are E 1 F 1, E 1 F 2, E 2 F 1 and E 2 F 2

6
Taguchi Method Using Orthogonal Arrays for Generating Balanced Combinations of NoIsE Factors 3 Noise Factors =>3 Noise Factors => –‘balanced’ combinations using OA gives just the right number (between 4 to 9) L4 (3 NF with 2-levels) 4 combinations (next slide)

7
L9 expt. With Noise Array (7) Taguchi Method for Q&R : L9 expt. with 2 noise factors Expt.No. 12 3 4 5 6 7 8 9 1 1 1 2 2 2 3 3 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 2 3 1 1 2 3 2 3 1 3 1 2 ABCD Control Factors Control Factors E1F1G1E1F1G1E1F1G1E1F1G1 E1F2G2E1F2G2E1F2G2E1F2G2 E2F1G2E2F1G2E2F1G2E2F1G2 E2F2G1E2F2G1E2F2G1E2F2G1 Y 11 Y 12 Y 13 Y 14 Y 21 Y 22 Y 23 Y 24 Y 31 Y 32 Y 33 Y 34 Y 41 Y 42 Y 43 Y 44 Y 51 Y 52 Y 53 Y 54 Y 61 Y 62 Y 63 Y 64 Y 71 Y 72 Y 73 Y 74 Y 81 Y 82 Y 83 Y 84 Y 91 Y 92 Y 93 Y 94 E1F1G1E1F1G1E1F1G1E1F1G1 E1F2G2E1F2G2E1F2G2E1F2G2 E2F1G2E2F1G2E2F1G2E2F1G2 E2F2G1E2F2G1E2F2G1E2F2G1 E, F and G are noise factors with 2 level each, 4 combinations as per L4 Array are E 1 F 1 G 1, E 1 F 2 G 2, E 2 F 1 G 2 and E 2 F 2 G 1 L4 Array Noise Measurements to Capture Noise E F 1234 G 1122 1212 1221 #

8
L9 expt. With Noise Array (7) Taguchi Method for Q&R : L9 expt. with 2 noise factors E, F, G and H are noise factors with 3 level each, 9 combinations as per L9 Array are used for measurements #1 to #9 Measurements to Capture NoIsE L9 Array E F G H 111223332 123131232 123213123 123322311 Expt.No. 12 3 4 5 6 7 8 9 1 1 1 2 2 2 3 3 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 2 3 1 1 2 3 2 3 1 3 1 2 ABCD Control Factors Control Factors Y 11 Y 12 Y 13 Y 14 Y 15 Y 16 Y 17 Y 18 Y 19 Y 21 Y 22 Y 23 Y 24 Y 25 Y 26 Y 27 Y 28 Y 29 Y 31 Y 32 Y 33 Y 34 Y 35 Y 36 Y 37 Y 38 Y 39 Y 41 Y 42 Y 43 Y 44 Y 45 Y 46 Y 47 Y 48 Y 49 Y 51 Y 52 Y 53 Y 54 Y 55 Y 56 Y 57 Y 58 Y 59 Y 61 Y 62 Y 63 Y 64 Y 65 Y 66 Y 67 Y 68 Y 69 Y 71 Y 72 Y 73 Y 74 Y 75 Y 76 Y 77 Y 78 Y 79 Y 81 Y 82 Y 83 Y 84 Y 85 Y 86 Y 87 Y 88 Y 89 Y 91 Y 92 Y 93 Y 94 Y 95 Y 96 Y 97 Y 98 Y 99 #1#2#3#4#5#6#7#8#9#1#2#3#4#5#6#7#8#9

9
Taguchi Method Using Orthogonal Arrays for Generating Balanced Combinations of NoIsE Factors 3 or more Noise Factors =>3 or more Noise Factors => –‘balanced’ combinations using OA gives just the right number (between 4 to 9) L4 (3 NF with 2-levels) 4 combinations L8 (upto 7 NF with 2-levels) 8 combinations L9 (upto 4 NF with 3-levels) 9 combinations Friday, 25 th May 2001

10
More Tips Links below 16.Taguchi Method V a r i a n c e R e d u c t i o n Factor Effects 1 st Priority : V a r i a n c e R e d u c t i o n 2 nd Priority : Factor Effects “inner” “outer” 15. “inner” L9 array with “outer” L4 and L9 NoIsE arrays 14.Taguchi Method “inner” “outer” “inner” L18 array with “outer” L4 and L9 NoIsE arrays not 13.Taguchi Method Why/When is Taguchi Method not Appropriate? Friday, 3rd Aug 2001 Friday, 27 th July 2001 Friday, 20 th July 2001 Friday, 13 th July 2001 Tips 12, 11, 10

11
More Tips Links below 12.Taguchi Method “inner” “outer” “inner” L8 array with “outer” L4 and L9 NoIsE arrays 11.Taguchi Method ALL Life-stages Useful at ALL Life-stages of a Process or Product 10.Taguchi Method “centering”“fine tuning” Performs Process “centering” or “fine tuning” Friday, 6 th July 2001 Friday, 29 th June 2001 Friday, 22 nd June 2001 Tips 9, 8, 7

12
More Tips Links below NoIsE Tolerance Design 9.Taguchi Method Identifies the “right” NoIsE factor(s) for Tolerance Design 8.Taguchi Method Finds best settings to optimize TWO quality characteristics Simultaneously 7. Taguchi Method When to select a ‘Larger’ OA to perform “Factorial Experiments” Friday, 15 th June 2001 Friday, 8 th June 2001 Friday, 1 st June 2001 Tips 6, 5, 4

13
More Tips Links below 6.Taguchi Method Using Orthogonal Arrays for Generating Balanced Combinations of NoIsE Factors approaching IDEAL value 5.Taguchi Method Signal-to-Noise Ratio for Quality Characteristics approaching IDEAL value 4. Taguchi Method improves " quality “ at all the life stages the design stage itself at the design stage itself Friday, 25 th May 2001 Friday, 18 th May 2001 Friday, 11 th May 2001 Tips 3, 2, 1

14
More Tips Links below Concurrent Engineering 3.Taguchi Method Appropriate for Concurrent Engineering 2.Taguchi Method can study Interaction Noise Factors Control Factors between Noise Factors and Control Factors Signal-to-Noise Ratios Log form 1.Taguchi’s Signal-to-Noise Ratios are in Log form Friday, 4 th May 2001 Friday, 27 th April 2001 Friday, 6 th April 2001

15
end

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google