Presentation is loading. Please wait.

Presentation is loading. Please wait.

ASTROPHYSICS SUMMARY. Constellation is a group of stars that form a pattern as seen from the Earth, but not bound by gravitation Stellar cluster is a.

Similar presentations

Presentation on theme: "ASTROPHYSICS SUMMARY. Constellation is a group of stars that form a pattern as seen from the Earth, but not bound by gravitation Stellar cluster is a."— Presentation transcript:


2 Constellation is a group of stars that form a pattern as seen from the Earth, but not bound by gravitation Stellar cluster is a group of stars held together by gravitation in same region of space, created roughly at the same time. Galaxy is a huge group of stars, dust, and gas held together by gravity, often containing billions of stars, measuring many light years across. Star is a massive body of gas held together by gravity, with fusion going on at its center, giving off electromagnetic radiation. There is an equilibrium between radiation/gas pressure and gravitational pressure Comet: A small body composed of mainly ice and dust that orbits the sun in an elliptical orbit. Clusters: Gravitationally bound system of galaxies/stars.

3 PlanetMass/kgRadius/mOrbit radius/m Orbital period (avg.) Mercury3.30 x 10 23 2.44 x 10 6 5.79 x 10 10 88.0 days Venus4.87 x 10 24 6.05 x 10 6 1.08 x 10 11 224.7 days Earth5.98 x 10 24 6.38 x 10 6 1.50 x 10 11 365.3 days Mars6.42 x 10 23 3.40 x 10 6 2.28 x 10 11 687.0 days Jupiter1.90 x 10 27 6.91 x 10 7 7.78 x 10 11 11.86 years Saturn5.69 x 10 26 6.03 x 10 7 1.43 x 10 12 29.42 years Uranus8.66 x 10 25 2.56 x 10 7 2.88 x 10 12 83.75 years Neptune1.03 x 10 26 2.48 x 10 7 4.50 x 10 12 163.7 years

4 1. A hot solid, liquid or gas at high pressure produces a continuous spectrum – all λ. 2. A hot, low-density / low pressure gas produces an emission-line spectrum – energy only at specific λ. 3. A continuous spectrum source viewed through a cool, low-density gas produces an absorption-line spectrum – missing λ – dark lines. Thus when we see a spectrum we can tell what type of source we are seeing. SPECTRA

5 surface temperature of a star is determined by measuring the wavelength at which most of the radiation is emitted. Explainatomic spectra Explain how atomic spectra may be used to deduce chemical and physical data for stars. Doppler shift information of speed relative to earth (red shift → longer wavelength, blue shift → shorter wavelength) Most stars essentially have the same chemical composition, yet show different absorption spectra as they have different temperatures. Absorption spectra gives information about the temperature of the star and its chemical composition.

6 Astronomical Unit The average distance between Earth and the sun, about 150 million kilometers D = 1 AU = 149597870691 m ≈ 1.5x10 11 m

7 Black bodies in thermal equilibrium Black bodies in thermal equilibrium emit energy to balance the energy they absorb and remain at a constant temperature. The wavelengths at which an ideal blackbody emits electromagnetic radiation depends on the temperature and absolutely nothing else. That is why the radiation emitted by an blackbody is often called thermal radiation. A radiating blackbody emits energy at all wavelengths and the hotter a blackbody is, the more total energy it emits. A black body A black body is a hypothetical object which absorbs all incident electromagnetic radiation emits Planck’s Wien’s law Black body emits energy according to Planck’s and Wien’s law

8 radiation spectrum black-body radiation/ Plank’s law. Stars’ and planets’ radiation spectrum is approximately the same as black-body radiation/ Plank’s law. Intensity as a function of wavelength Intensity as a function of wavelength depends upon its temperature Wien’s law: Wavelength at which the intensity of the radiation is a maximum λ max, is:

9 Luminosity Luminosity (of a star) is the total power (total energy per second) radiated by an object (star). If we regard stars as black body, then luminosity is L = A σT 4 = 4­πR 2 σT 4 (Watts) Stefan-Boltzmann’s law A is surface area of the star, R is the radius of the star, T surface temperature (K), σ is Stefan-Boltzmann constant. (Apparent) brightness (b) (Apparent) brightness (b) is the power from the star received per square meter of the Earth’s surface L is luminosity of the star; d its distance from the Earth

10 Since both are red (the same color), the spectra peak at the same wavelength. By Wien's law Star A is 9 times brighter and as they are the same distance away from Earth. Star A is 9 times more luminous: So, Star A is three times bigger than star B. Suppose I observe with my telescope two red stars A and B that are part of a binary star system. Star A is 9 times brighter than star B. What can we say about their relative sizes and temperatures? then they both have the same temperature. L = 4π R 2 σ T 4 (W)

11 Suppose I observe with my telescope two stars, C and D, that form a binary star pair. ▪ Star C has a spectral peak at 350 nm - deep violet ▪ Star D has a spectral peak at 700 nm - deep red What are the temperatures of the stars? By Wien's law Thus we have for star C, and for star D

12 If both stars are equally bright (which means in this case they have equal luminosities since the stars are part of a pair the same distance away), what are the relative sizes of stars C and D? So that stars C is 4 times smaller than star D.

13 Magnitude Scale Magnitude Scale Magnitudes are a way of assigning a number to a star so we know how bright it is Apparent magnitude (m) Apparent magnitude (m) of a celestial body is a measure of its brightness as seen from Earth. The brighter the object appears the lower its apparent magnitude. Greeks ordered the stars in the sky from brightest to faintest… Later, astronomers accepted and quantified this system. Every one step in magnitude corresponds to a factor of 2.51 change in brightness. Ex: m 1 = 6 and m 2 = 9, then b 1 = (2.51) 3 b 2

14 Absolute magnitude (M) apparent magnitude Absolute magnitude (M) of a star is the apparent magnitude that a star would have if it were at distance of 10 pc from Earth. It is the true measurement of a star’s brightness seen from a set distance. m – apparent magnitude M – absolute magnitude of the star d – its distance from the Earth measured in parsecs. If two stars have the same absolute magnitude but different apparent magnitude they would have the same brightness if they were both at distance of 10 pc from Earth, so we conclude they have the same luminosity, but are at different distances from Earth !!!!!!!!!!!!!! Every one step in absolute magnitude corresponds to a factor of 2.51 change in luminosity. Ex: M 1 = – 2 and M 2 = 5, then L 1 / L 2 = (2.51) 7

15 The table shows some data for Procyon A and Procyon B. (a) Explain, using data from the table, why (i) as viewed from Earth, P A is much brighter than P B. (ii) the luminosity of P A is much greater than that of P B. (i) the apparent magnitude of P A is (much) smaller than that of P B ; the smaller apparent magnitude, the brighter the star or [2] apparent brightness of P A is greater than P B ; apparent brightness is intensity at surface of Earth; Apparent magnitude Absolute magnitude Apparent brightness / W m –2 Procyon A (P A )+ 0.400+ 2.682.06 x 10 –8 Procyon B (P B )+ 10.7+ 13.01.46 x 10 –12 (ii) the absolute magnitude of P A is smaller than that of P B ; the absolute magnitude is the apparent magnitude at a distance of 10 pc from the Earth; so at the same distances from Earth P A is much brighter than P B so must be more luminous; Or [3] absolute magnitude of P A is less than absolute magnitude of P B ; absolute magnitude is a measure of luminosity; lower values of absolute magnitude refer to brighter/more luminous star; or Accept answer based on answer to (c). distances are the same from (c); since L = 4πd 2 b P A is brighter than P B ;

16 (b) Deduce, using data from the table, that P A and P B are approximately the same distance from Earth. [2] Apparent magnitude Absolute magnitude Apparent brightness / W m –2 Procyon A (P A )+ 0.400+ 2.682.06 x 10 –8 Procyon B (P B )+ 10.7+ 13.01.46 x 10 –12 (c) State why P A and P B might be binary stars. [1] same distance from Earth and in the same region of space

17 Binary star Binary star is a stellar system consisting of two stars orbiting around their common center of mass. The ONLY way to find mass of the stars is when they are the part of binary stars. Knowing the period of the binary and the separation of the stars the total mass of the binary system can be calculated (not here).

18 Visual binary Visual binary: a system of stars that can be seen as two separate stars with a telescope and sometimes with the unaided eye They are sufficiently close to Earth and the stars are well enough separated. Sirius A, brightest star in the night sky and its companion first white dwarf star to be discovered Sirius B.

19 Spectroscopic binary: A binary-star system which from Earth appears as a single star, but whose light spectrum (spectral lines) shows periodic splitting and shifting of spectral lines due to Doppler effect as two stars orbit one another.

20 Eclipsing binary: (Rare) binary-star system in which the two stars are too close to be seen separately but is aligned in such a way that from Earth we periodically observe changes in brightness as each star successively passes in front of the other, that is, eclipses the other

21 ClassTemperatureColour O30 000 - 60 000Blue B10 000 - 30 000Blue-white A7 500 - 10 000White F6000 - 7500Yellow-white G5000 - 6000Yellow K3500 - 5000Orange M2000 - 3500Red Stellar Spectra classification system

22 The Hertzsprung–Russell (H – R) The Hertzsprung–Russell (H – R) diagram(family portrait) is a scatter graph of stars showing the relationship between the stars' absolute magnitudes / luminosities versus their spectral types(color) /classifications or surface temperature. It shows stars of different ages and in different stages, all at the same time. L Q = sun luminosity = 3.839 × 10 26 W main sequence stars: fusing hydrogen into helium, the difference between them is in mass left upper corner more massive than right lower corner. white dwarf compared to a main sequence star: has smaller radius more dense higher surface temperature energy not produced by nuclear fusion

23 Techniques for determining stellar distances: stellar parallax, spectroscopic parallax Cepheid variables.

24 For small angles: Parallax Method Parallax Method relies on the apparent movement of the nearby star against the background of further stars as the earth orbits the sun. It can be used for the nearest stars to about 100 parsec. two apparent positions of the star as seen by an observer from two widely separated points are compared and recorded to find angle p knowing the distance of Earth to the sun, the distance to the star can be calculated using geometry Parallaxes are expressed in seconds 1 pc = 3.09 X 10 16 m parsec ‘One parsec is a distance corresponding to a parallax of one arc second' if p = 1 sec of arc, d = 3.08x10 16 m defined as 1 pc

25 Spectroscopic parallax Spectroscopic parallax: no parallax at all!!!! (a lot of uncertainty in calculations) light from star analyzed (relative amplitudes of the absorption spectrum lines) to give indication of stellar class/temperature HR diagram used to estimate the luminosity distance away calculated from apparent brightness limit: d ≤ 10 Mpc Spectroscopic parallax is only accurate enough to measure stellar distances of up to about 10 Mpc. This is because a star has to be sufficiently bright to be able to measure the spectrum, which can be obscured by matter between the star and the observer. Even once the spectrum is measured and the star is classified according to its spectral type there can still be uncertainty in determining its luminosity, and this uncertainty increases as the stellar distance increases. This is because one spectral type can correspond to different types of stars and these will have different luminosities.

26 1 - Spica Apparent magnitude, m = 0.98 Spectral type is B1 From H-R diagram this indicates an absolute magnitude, M, in the range: -3.2 to -5.0 d = 10 (m-M+5)/5 M= – 3.2, d = 10 (0.98 - (-3.2) +5)/5 = 68.54 pc M= – 5.0, d = 10 (0.98 - (-5.0) +5)/5 = 157.05 pc The Hipparcos measurements give d = 80.38 pc

27 2 - Tau Ceti Apparent magnitude, m = 3.49 Spectral type is G2 From H-R diagram this indicates an absolute magnitude, M, in the range: +5.0 to +6.5 d = 10 (m-M+5)/5 M= +5.0, d = 10 (3.49 -5.0 +5)/5 = 5.00 pc M= +6.5, d = 10 (3.49 -6.5 +5)/5 = 2.50 pc The Hipparcos measurements give d = 3.64 pc

28 Cepheid variables are stars with regular variation in absolute magnitude (luminosity) (rapid brightening, gradual dimming) which is caused by periodic expansion and contraction of outer surface (brighter as it expands). This is to do with the balance between the nuclear and gravitational forces within the star. In most stars these forces are balanced over long periods but in Cepheid variables they seem to take turns, a bit like a mass bouncing up and down on a spring. Left: graph shows how the apparent magnitude (the brightness) changes, getting brighter and dimmer again with a fixed, measurable period for a particular Cepheid variable. There is a clear relationship between the period of a Cepheid variable and its absolute magnitude. The greater the period then the greater the maximum luminosity of the star. Cepheids typically vary in brightness over a period of about 7 days. Left is general luminosity – period graph. So, to find out how far away Cepheid is: Measure brightness to get period Use graph absolute magnitude M vs. period to find absolute magnitude M Measure maximum brightness Calculate d from b = L/4πd 2 Distances to galaxies are then known if the Cepheid can be ascertained to be within a specific galaxy.

29 Newton assumptions about the nature of the universe: universe is infinite in extent contains an infinite number of stars uniformly distributed is static and exists forever these assumptions led to Olber’s paradox Olber’s paradox: Why in the world is the sky dark??? According to these assumptions the sky should not be dark

30 density of stars n = N/V = number of stars per unit volume divide the whole universe into concentric shells around Earth of constant thickness t look at one shell of thickness t at distance d from the Earth since stars are uniformly distributed the number of stars seen from Earth increases as d 2 : number of stars in shell = density x volume = n 4πd 2 t brightness of one star decreases as 1/d 2 ; b = L/4 πd 2 brightness of shell is constant; assuming that luminosity L is the same for all stars, the received energy per sec per unit area (brightness) from all stars in the thin shell is: amount of light we receive from shell does not depend upon how far away the shell is adding all shells to infinity; each contributing a constant amount of energy the total energy is infinite sky would be uniformly bright but it’s dark in night

31 Possible solutions to Olber’s paradox Perhaps the Universe is not infinite. But current model of the Universe is that it is infinite. Perhaps the light is absorbed before it gets to us. But then Universe would warm up and eventually reradiate energy. Real help: the Big Bang model leads to the idea that the observable universe is not infinite and to the idea of the expansion of the universe; Universe is not static, it is expanding, hence the most distant stars/ galaxies are strongly red - shifted, out of the visible part of the spectrum. There is a finite time since the Big Bang. Some 12 to 15 billion years. That means we can only see the part of it that lies within 12 to 15 billion light-years from us. And the observable part of the universe contains too few stars to fill up the sky with light.

32 Calculation shows that the helium produced by nuclear fusion within stars cannot account for the real amount of helium in Universe (24%). In 1960 it was proposed that sometime during the early history of the Universe, long before any star, Universe was at a sufficiently high temperature to produce helium by fusion. In this process many high energy photons would be produced. The CMB (Cosmic Microwave Background Radiation) radiation was emitted only a few hundred thousand years after the Big Bang, long before stars or galaxies ever existed. The photons would have a black body spectrum corresponding to the then temperature of the Universe. As the Universe expanded and cooled the photon spectrum would also change with their maximum wavelength shifting in accordance with Wien’s law. It is estimated that at the present time the photons should have a maximum wavelength corresponding to a black body spectrum of an extremely cold object of temperature of 2.7 K.

33 Cosmological background radiation / Cosmic microwave background radiation (CMB) is microwave radiation - left over from the Big Bang that fills the universe roughly uniformly in all directions. The Big Bang predicts an expanding universe that had a very high temperature at the beginning; during the expansion the universe is cooling down and the temperature of the radiation should fall to its present low value of about 2.7 K. That radiation corresponds to a black body spectrum of about 2.7 K. The other way of explaining CMB is: Big Bang producing initially produced very short wavelength photons /EM radiation. As the universe expands, the wavelengths become red shifted to reach current value. █ Explain how knowledge of the spectrum of a black body and the existence of cosmological background radiation is consistent with the “Big Bang” model of the universe. Big Bang predicts a low temperature radiation at 2.7 K (i.e. CMB radiation). The Big Bang theory also predicts an expanded universe which we observe through red- shifting of the galaxies and the lowering of CMB radiation temperature. This expanding universe is the result of the initial energy released in the Big Bang

34 █ State one piece of evidence that indicates that the Universe is expanding. light from distant galaxies/stars is red-shifted (which means they move away from us – as the red-shifting occurs in all direction, the universe must be expanding) existence of CMB the helium abundance in the universe which is about 25 % and is consistent with a hot beginning of the universe;

35 The eventual fate of the Universe is determined by the amount of mass in the Universe. Critical density Critical density is the density of the Universe which produces a flat universe, i.e. it would take an infinite amount of time to stop expansion of it. Critical density Critical density is the density of the Universe that would be necessary to stop the expansion after an infinite amount of time. Closed Universe Closed Universe A model of the universe in which density of the Universe is such that gravity will stop the universe expanding and then cause it to contract. Eventually the contraction will result in a ‘Big Crunch’ after which the whole creation process could start again. Open Universe Open Universe A model of the universe in which density is such that gravity is too weak to stop the Universe expanding forever. Flat Universe Flat Universe means that the density is at a critical value whereby the Universe will only start to contract after an infinite amount of time.

36 Distinguish between the terms open, flat and closed when used to describe the development of the universe. OPEN: keeps expanding FLAT: the rate of expansion tends to zero at infinite time CLOSED: stops expanding and starts to contract non-coincident starts (not at beginning); correct shapes and correctly labelled; coincident at appropriate place;

37 Dark matter is the matter that makes up for most of the mass in the universe, but cannot easily be detected because it does not emit radiation. ► two of Neutrinos / WIMPS / MACHOS / black holes / exotic super symmetric particles / grand unified predicted particles / magnetic monopoles etc.; or maybe our current theory of gravity is again not correct Its existence is inferred from techniques rather then direct visual contact (gravitational effects on visible matter, radiation and the large-scale structure of the cosmos). Examples of dark matter.

38 astrophysicsindex.html physics_SL#F.1.2_Bodies_within_the_Universe VOCABULARY: EVERYTHING IN NICE DETAILS

39 Arc Second “One degree split up into seconds (1/3600 of a degree). Light Year lyThe distance light travels during one year Absolute Luminosity LThe total power radiated from a star in watts Apparent Brightness bPower of star light reaching Earth in W m -2 Absolute Magnitude MApparent Magnitude of a star at a standard distance of 10 parsec. Apparent Magnitude mHow bright a star looks (scale 6 to 1, 1 being the brightest). Black BodyHot body who’s emission spectrum depends on its temperature only (stars are considered black bodies because they emit all energy produced). Black Body RadiationRadiation from a theoretical “perfect” emitter. Cepheid Variable StarA star that varies periodically in size (not mass!!) and hence luminosity, which is caused by periodic expansion and contraction of outer surface. Luminosity increases sharply and falls off gently with a well-defined period. The period is related to the absolute luminosity of the star and so can be used to estimate the distance to the star (greater than 10 Mpc). Binary StarTwo (or more) stars orbiting a common center of mass. Planetary OrderMercury, Venus, Earth, Mars, Asteroid Belt, Jupiter, Saturn, Neptune, Uranus, Pluto Eclipsing BinariesTwo stars that regularly eclipse each one another causing a periodic variation in brightness.

40 Red GiantA large and relative cool star in one of the later stages of its life. The source of its energy is fusion of some other element than hydrogen. Red Super GiantA very large mass and relative cool star in one of the later stages of its life. The source of its energy is fusion of some other element than hydrogen. White DwarfA small and relative cool star at one of the possible final stages of a star’s life. Fusion is no longer taking place and hence it is cooling down. Parsec1 parsec is the distance which will give a parallax angle of exactly 1 arc second, with 1 AU as the baseline (3.26 light years). 1 pc = 3.08x10 16 m Astronomical UnitThe radius of Earth’s orbit around the Sun 1 AU = 1.5 x 10 11 m Red ShiftIncrease in wavelength emitted from galaxies and stars moving away from Earth. This can either be due to the Doppler Effect or expansion of space (which expands the wave). Critical DensityThe theoretical density of the universe necessary to create a “flat” universe after an infinite amount of time

41 Dark MatterMatter in galaxies that is too cold to radiate. Its existence is inferred from techniques rather then direct visual contact (gravitational effects on visible matter, radiation and the large-scale structure of the cosmos). MACHOsBlack holes, high-mass planets or/and failed stars – all who produce very little or no light (hence not seeable). WIMPsA new type of particle that can prove the existence of dark matter. Newton's First Postulate about the Universe The universe is infinite. Newton's Second Postulate about the Universe Mass is uniformly distributed in space. Obler's ParadoxWhy is not the sky bright at night if there is a bright star at every point in the sky? (Inverse Square Law) Wein's Displacement Law Wavelength of radiation with maximum intensity (peak wavelength) is inversely proportional to the temperature of the black body. Stefan-Boltzman LawLinks the total power output radiated by a black body to its temperature.

Download ppt "ASTROPHYSICS SUMMARY. Constellation is a group of stars that form a pattern as seen from the Earth, but not bound by gravitation Stellar cluster is a."

Similar presentations

Ads by Google