Download presentation

Presentation is loading. Please wait.

Published byTristian Sarsfield Modified over 2 years ago

1
1 A new iterative technique for solving nonlinear coupled equations arising from nuclear waste transport processes H. HOTEIT 1,2, Ph. ACKERER 2, R. MOSE 2,3 1 IRISA-INRIA, Rennes 2 Institut de Mécanique des Fluides et des Solides, IMFS, Strasbourg 3 Ecole Nationale du Génie de l'Eau et de l'Environnement, ENGEES, Strasbourg 34 ème Congrès National d'Analyse Numérique 27 Mai - 31 Mai 2002

2
2 Outline Mathematical model of the transport processes. Numerical methods: Mixed Hybride Finite Element method (MHFE); Discontinuous Galerkin method (DG). Linearization techniques: Picard (fixed point) method; Newton-Raphson method. Some numerical results.

3
3 Transport Processes The transport process concerns an isolated nuclide chain : with the following transport mechanisms : advection, dispersion/diffusion ; mass production/reduction ; precipitation/dissolution ; simplified chemical reactions (sorption).

4
4 Mathematical model Transport equation S k is a nonlinear precipitation/dissolution term

5
5 Numerical methods Operator splitting technique is used by coupling Diffusion/dispersion by MHFEM Advection by DGM Linearization is done by using Picard (Fixed Point) method Newton-Raphson method

6
6 MHFE Advantages mass is conserved locally ; the state head and its gradient are approximated simultaneously ; velocity is determined everywhere due to Raviart-Thomas space functions; full tensors of permeability are easily approximated ; Fourier BC are easily handled ; it can be simply extended to unstructured 2D and 3D grids ; the linear system to solve is positive definite. Disadvantages scheme is non monotone ; number of degrees of freedom=number of sides (faces).

7
7 DGM Advantages mass is conserved locally ; satisfies a maximum principle (conserves the positively of the solution) ; can capture shocks without producing spurious oscillation ; ability to handle complicated geometries ; simple treatment of boundary conditions. Disadvantages limited choice of the time-step (explicit time discretization) ; slope (flux) limiting operator stabilize the scheme but creates small amount of numerical diffusion.

8
8 Linearization by the Picard method The transport system is rewritten in the form where,

9
9 Linearization by the Picard method The (m+1)th step of the Picard-iteration process Stopping criteria

10
10 Linearization by the Picard method Convergence needs very small time steps, otherwise : Residual errors for C and F

11
11 Coupling Picard and Newton-Raphson methods Define the residual function By using Taylor’s approximation, we get By simple differentiating, we obtain

12
12 Coupling Picard and Newton-Raphson methods The iterative process Time steps

13
13 Coupling Picard and Newton-Raphson methods Convergence is attained even with bigger time steps (20 times bigger)

14
14 Some numerical results Repository siteNetwork of alveolusElementary cell The repository is made up of a big number of alveolus. Computation is made on an elementary cell. Periodic boundary conditions are used.

15
15 10 6 years10 5 years10 4 years

16
16 Precipitated and dissolved mass in the domain Mass balance in the domain Relative error after 10 6 years

17
17 Conclusion Coupling DG and MHEF methods to solve a transport equation with nonlinear precipitation /dissolution function. By using the Picard method, small time steps should be considered otherwise no convergence is attained. Coupling Picard and Newton-Raphson methods Newton-Raphson methods is used for solid phase equation. Picard method methods is used for the transport equation. Convergence is attained even with bigger time steps (20 times bigger).

Similar presentations

OK

Discontinuous Galerkin Methods for Solving Euler Equations

Discontinuous Galerkin Methods for Solving Euler Equations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Best ppt on social networking sites Ppt on id ego superego theory Ppt on event driven programming wiki Ppt on solar energy and its uses Ppt on network security in ieee format Ppt on any one mathematician john Ppt on question tags rules Ppt on time management for nurses Ppt on bluetooth hacking downloads Ppt on economy of china