Presentation is loading. Please wait.

Presentation is loading. Please wait.


Similar presentations

Presentation on theme: "SUCROSE HEMOLYSIS TEST"— Presentation transcript:

Practical Clinical Hematology SUCROSE HEMOLYSIS TEST 13

2 Introduction The sucrose hemolysis test is used as a confirmatory test for paroxysmal nocturnal hemoglobinuria (PNH) when the sugar water test is positive. Paroxysmal nocturnal haemoglobinuria (PNH) is an acquired clonal disorder of haemopoiesis in which the patient's red cells are abnormally sensitive to lysis by normal constituents of plasma.

3 Introduction It is characterized by haemoglobinuria during sleep (nocturnal haemoglobinuria), jaundice, and haemosiderinuria. PNH is an acquired clonal disorder resulting from a somatic mutation occurring in a haemopoietic stem cell.

4 Introduction The characteristic feature of cells belonging to the PNH clone is that they are deficient in several cell-membrane–bound proteins including red cell: Acetylcholine esterase, Neutrophil alkaline phosphatase, CD55 (decay accelerating factor or DAF), Homologous restriction factor (HRF), and CD59 (membrane inhibitor of reactive lysis or MIRL).

5 Introduction CD55, CD59, and HRF all have roles in the protection of the cell against complement-mediated attack. CD59 inhibits the formation of the terminal complex of complement, and it has been established that the deficiency of CD59 is largely responsible for the complement sensitivity of PNH red cells.

6 Introduction PNH type III red cells have a complete deficiency of CD59, whereas PNH type II red cells have only a partial deficiency, and it is this difference that accounts for their variable sensitivities to complement. PNH red cells are unusually susceptible to lysis by complement. This can be demonstrated in vitro by a variety of tests e.g: Sugar water test. Sucrose lysis test. The acidified-serum [Ham test].

7 Introduction A characteristic feature of a positive test for PNH is that not all the patient's cells undergo lysis, even if the conditions of the test are made optimal for lysis. This is because only a proportion of any patient's PNH red cell population is hypersensitive to lysis by complement. This population varies from patient to patient. There is a direct relationship between the proportion of red cells that can be lysed (in any of the diagnostic tests) and the severity of in vivo haemolysis.

8 Reagents and Equipment
Sucrose solution (isotonic). Cyanmethemoglobin reagent. ( drabkin’s reagent) Test tubes. ABO compatible serum (or serum from type AB blood) from a normal donor. Sodium chloride, 0.85% w/v. Pipets, Spectrophotometer. 540 nm. Specimen must be fresh. Citrated whole blood: 1 part M sodium citrate to 9 parts whole blood.

9 Principle Washed red blood cells are incubated in an isotonic sucrose solution containing normal ABO compatible serum. At low ionic concentrations, red blood cells absorb complement components from serum. Because PNH red blood cells are much more sensitive than normal red cells they will hemolyzed under these conditions. The normal red blood cells will not. At the end of the incubation period the mixture is examined for hemolysis.

10 Procedure Prepare washed cell 1 mL patient blood .
Add normal saline ( sodium chloride 0.85%) Mix , centrifuge at high speed for 5 min. carefully remove supernatant. Repeat step 2,3. Washed cell

11 Prepare washed cell 50% solution
Add from W.C tube 3 drop of cells 3 drop of N.S, mix. W.C 50%

12 Prepare blood-sucrose tube, Blank1 tube
Reagent 1.7 ml Sucrose solution. 1. 0.1ml ABO Compatible serum. 2. 0.2ml The 50% W.C, Mix by inversion 3. Incubate at R.T 30 min. 4.

13 Prepare of Total ,Test, Blank tube
Reagent 4750 µl Drabkin’s 1. ----- 250 µl, mix incubation 10 min. After complete 30 min. incubation, & remix blood-serum tube. 2. After complete 30 min. incubation, & remix Blank1 tube. 3. After complete 5 min. centrifuge of remaining blood-sucrose tube, from the supernatant. 4.

14 procedure Transfer above mixtures to a cuvet and read in a spectrophotometer at a wavelength of 540 nm. Setting the blank al 0.0 optical density. Record the O.D. readings for each sample. Calculate the percent hemolysis for each specimen as shown below. Percent Hemolysis = O.D. Test x100 O.D. Total

15 Interpretation of results
Hemolysis 5% or less is considered negative within normal limits. Hemolysis of 6 to 10% is thought to be borderline. Positive results will show greater than 10% hemolysis.

16 Discussion Increased hemolysis (generally less than 10%) may be found in some patients with leukemia or myelofibrosis; whereas patients with PNH show 10% to 80% hemolysis (will only rarely be as Iow a 5%). Results of the sucrose hemolysis test should correlate with the acid serum test.


Similar presentations

Ads by Google