Download presentation

Presentation is loading. Please wait.

Published byRandall Ruskin Modified over 2 years ago

1
1 Pertemuan 07 Teknik Modulasi Matakuliah: H0174/Jaringan Komputer Tahun: 2006 Versi: 1/0

2
2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu: Menjelaskan teknik modulasi

3
3 Outline Materi Teknik Modulasi Modulasi analog Modulasi digital

4
4 Encoding Techniques Analog data, carrier analog signal Digital data, carrier analog signal Analog Modulation Analog data, carrier digital signal Digital Modulation Digital data, carrier digital signal Encoding

5
5 Analog Data, Analog Signals Why modulate analog signals? –Higher frequency can give more efficient transmission –Permits frequency division multiplexing Types of modulation –Amplitude –Frequency –Phase

6
6 Analog Modulation

7
7 MODULASI TUJUAN: MENGUBAH SINYAL DARI KOMPUTER YANG DIGITAL MENJADI SINYAL ANALOG YANG DIPERLUKAN OLEH SALURAN KOMUNIKASI MEMPERPANJANG JARAK JANGKAU SINYAL INFORMASI MODEM MERUPAKAN HARDWARE UNTUK KEDUA PROSES INI LST/FASKD/CINQ

8
8 Type Modulasi Digital /Analog

9
9 Modulation Techniques

10
10 Frequency Shift Keying Most common form is binary FSK (BFSK) Two binary values represented by two different frequencies (near carrier) Less susceptible to error than ASK Up to 1200bps on voice grade lines High frequency radio Even higher frequency on LANs using co-ax

11
11 Phase Shift Keying Phase of carrier signal is shifted to represent data Binary PSK –Two phases represent two binary digits Differential PSK –Phase shifted relative to previous transmission rather than some reference signal

12
12 PSK Constellation

13
13 Quadrature PSK More efficient use by each signal element representing more than one bit –e.g. shifts of /2 (90 o ) –Each element represents two bits –Can use 8 phase angles and have more than one amplitude –9600bps modem use 12 angles, four of which have two amplitudes

14
14 4-PSK Constellation

15
15 4-QAM and 8-QAM

16
16 Quadrature Amplitude Modulation QAM used on asymmetric digital subscriber line (ADSL) and some wireless Combination of ASK and PSK Logical extension of QPSK Send two different signals simultaneously on same carrier frequency –Use two copies of carrier, one shifted 90 ° –Each carrier is ASK modulated –Two independent signals over same medium –Demodulate and combine for original binary output

17
17 BIT dan BAUD

18
18 ModulationUnitsBits/Baud Baud rate Bit Rate ASK, FSK, 2-PSK Bit1NN 4-PSK, 4-QAM Dibit2N2N 8-PSK, 8-QAM Tribit3N3N 16-QAMQuadbit4N4N 32-QAMPentabit5N5N 64-QAMHexabit6N6N 128-QAMSeptabit7N7N 256-QAMOctabit8N8N Perbandingan Bit dan Baud rate

19
19 Pertemuan 08 Teknik Encoding Matakuliah: H0174/Jaringan Komputer Tahun: 2006 Versi: 1/0

20
20 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Menjelaskan teknik encoding

21
21 Outline Materi Polar Bipolar Unipolar

22
22 Digital to Digital Encoding

23
23 Terminologi Unipolar –All signal elements have same sign Polar –One logic state represented by positive voltage the other by negative voltage Data rate –Rate of data transmission in bits per second Duration or length of a bit –Time taken for transmitter to emit the bit

24
24 Terminologi Modulation rate –Rate at which the signal level changes –Measured in baud = signal elements per second Mark and Space –Binary 1 and Binary 0 respectively

25
25 Digital to Digital Encoding

26
26 Polar Encoding

27
27 Bipolar Encoding

28
28 Modulation Rate

29
29 Unipolar Encoding - NRZL

30
30 Nonreturn to Zero Inverted Polar, Non Return To Zero Inverted Non return to zero, inverted on ones Constant voltage pulse for duration of bit Data encoded as presence or absence of signal transition at beginning of bit time Transition (low to high or high to low) denotes a binary 1 No transition denotes binary 0 An example of differential encoding

31
31 NRZ-L and NRZ-I

32
32 RZ Encoding

33
33 Biphase Manchester –Transition in middle of each bit period –Transition serves as clock and data –Low to high represents one –High to low represents zero –Used by IEEE 802.3 Differential Manchester –Mid bit transition is clocking only –Transition at start of a bit period represents zero –No transition at start of a bit period represents one –Used by IEEE 802.5

34
34 Manchester and Diff. Manchester

35
35 Multilevel Binary Use more than two levels Bipolar-AMI –zero represented by no line signal –one represented by positive or negative pulse –one pulses alternate in polarity –No loss of sync if a long string of ones (zeros still a problem) –No net dc component –Lower bandwidth –Easy error detection

36
36 Bipolar AMI Encoding

37
37 Perbandingan skema enkoding Error detection –Can be built in to signal encoding Signal interference and noise immunity –Some codes are better than others Cost and complexity –Higher signal rate (& thus data rate) lead to higher costs –Some codes require signal rate greater than data rate

Similar presentations

Presentation is loading. Please wait....

OK

Physical Layer – Part 2 Data Encoding Techniques

Physical Layer – Part 2 Data Encoding Techniques

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on travel and tourism for class 10 Ppt on tcp/ip protocol suite with diagram Ppt on aircraft emergencies videos Ppt on producers consumers and decomposers worksheets Ppt on power system stability course Ppt on sedimentary rocks formation Ppt on solid dielectrics A ppt on computer networking Ppt on dispersal of seeds by animals games Ppt on channels of distribution