Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Materia Oscura y Neutrinos L. Villaseñor IFM-UMSNH Red de Altas Energías Taxco, Gro. 4-7 de marzo, 2009.

Similar presentations


Presentation on theme: "1 Materia Oscura y Neutrinos L. Villaseñor IFM-UMSNH Red de Altas Energías Taxco, Gro. 4-7 de marzo, 2009."— Presentation transcript:

1 1 Materia Oscura y Neutrinos L. Villaseñor IFM-UMSNH Red de Altas Energías Taxco, Gro. 4-7 de marzo, 2009

2 2 Contenido Evidencias de materia oscura (MO)‏ Candidatos de MO Detecciones Directas e Indirectas Experimentos Presentes y Futuros Discusión

3 3 A Mexican group submitted a proposal to study DM in anunderground labto Conacyt in 2007 R&D money will possibly be granted in 2009

4 4

5 5 Evidence for Dark Matter Fritz Zwicky (1933) measured the velocities of the individual galaxies. He concluded that “dark” matter is required to hold the cluster Coma cluster, 350 M ly

6 6 Evidence for Dark Matter Flat Rotation curves of Galaxies. Rubin and W.K. Ford (1970) “What you see is not what you get. ”  Modified Newtonian Dynamics (Moglim 1983)‏  Modified Gravity such as Scalar tensor vector gravity theory (Moffat 2006)‏ Alternative Explanations v c ~ r  1/2  Local density : 0.3 GeV/cm 3

7 7 M. Persic et al Measured over and over Each plot contains galaxies according to luminosity

8 8 Widths of curves indicate 95% CL for the abundance predictions Measurements are shown as boxes. Non baryon dark mass is required! D. Tytler, J. M. O’Meara, N. Suzuki, and D. Lubin, astro- ph/ BB Nucleogenesis: Determines the present baryon mass density to only ~ 4% of critical density

9 9 Evidence for Dark Matter Bullet Cluster (Clowe et al., 2006)‏ two colliding Clusters of Galaxies at a distance of about 3.4 billion light years evidence against Modified Newtonian DynamicsDynamics (MOND) NASA RELEASE : "These observations provide the strongest evidence yet that most of the matter in the universe is dark" White – Visible Red – X Rays Blue - Grav. Lensing

10 10 Evidence for Dark Matter Lambda-Cold Dark Matter (concordance) model explains cosmic microwave background observations (WMAP), as well as large scale structure observations (Sloan Digital Sky Survey) and supernovae Ia data of the accelerating expansion of the universe. The Composition of the Universe

11 Cómo afecta la MO al sistema solar? Kepler equivocado? Dentro de la órbita terrestra se espera que haya ~ 10^10 kg Mientras que la masa del sol es 10^33 kg y de la tierra 10^24 kg Por lo tanto no se espera ningún efecto detectable.

12 Particle Candidate for Cold Dark Matter: WIMP Weakly Interacting Massive Particle Stable, TeV scale, electrically neutral, only weakly interacting No such candidate in the Standard Model Good candidate: neutralino, Lightest Supersymmetric Particle (LSP) in SUSY with m ~ 10 GeV to 10 TeV Linear combination of the zino, the photino and the neutral higgsinos May be produced at the LHC

13 Particle Candidate for Dark Matter But there are many other possibilities (techni- baryons, gravitino, axino, invisible axion, WIMPZILLAS (Godzilla-sized version of WIMPS, ruled out by Auger data), etc)‏

14 WIMP Dark Matter Produced in early Universe They are in thermally equilibrium at high temperature Decouple when expansion rate ~ interaction rate Density left-over from annihilation depends on cross section E.W. Kolb and M.S. Turner, The Early Universe X=m/Temperature (time  )‏ Comoving number density N equillibrium Increasing

15 15 WIMP DETECTION Direct Detection of halo particles in terrestrial detectors CDMS-II, ZEPLIN Edelweiss, DAMA, GENIUS, etc  f  f Scattering  

16 (direct) Detection method We can expect is only a collision with ordinary matter. Electron recoil does not give enough energy but nuclear recoil gives ~100keV if m DM ~O(100GeV). Dark Matter particle Energy deposit

17 17 WIMP DETECTION   f  f Annihilation Indirect Detection  SuperK, AMANDA, ICECUBE, GLAST  p e+e+  _ Search for neutrinos, gamma rays, radio waves, antiprotons, positrons in earth- or space-based experiments Direct and indirect methods are complementary techniques along with a possible discovery at the LHC

18 18 WIMP signatures (DirectDet)‏ Nuclear recoils  Neutrons (produce similar recoils with sigma higher, background reduction needed Recoil spectrum shape  Exponential (as most bkg)‏  Shape for backgrounds : electron/nuclear recoils Absence of multiple scattering (against neutron)‏ Uniform rate throughout volume (against surface radioactivity)‏ Directionality of nuclear recoils Annual rate modulation

19 19 WIMP signatures (Direct Det)‏

20 20 Current direct detection experiments StatusMaterialTechniqueLocationNameDiscriminati on Event-by-event Statistical None

21 21 B. Sadoulet KEKTC6

22 22 Based in Gran Sasso lab (3500 mwe)‏ 100 kg of NaI(Tl) Exposure : kg.d Coincidence between 2 PMTs Pulse shape rejection inefficient at 2 keV ee NaI PMT NaI scintillation : DAMA

23 23 NaI scintillation : DAMA Used annual modulation Claim annual modulation at 6.3σ over 7 annual cycles  Mχ ~ 52 GeV/c²  σ n ~ pb Not compatible with other experiments (CDMS, ZEPLIN, EDELWEISS) Future = LIBRA (250 kg of NaI)‏ Single-hits events residual rates DM density ~0.3GeV/cc 100GeV WIMPs  1 WIMP / 7cm cubic,  =10 5 /cm 2 /sec

24 Peccei y Quinn (1977)‏ Wilczek lo llamó axion “por limpiar QCD” Particle Candidate for Cold Dark Matter: AXION

25 B ~ 5 T Q ~ Desde 1995

26

27 Límite astrofísico m a < 2x10 -3 eV SN1987a y laboratorios Límite cosmológico rho a /rho o < 1 m a > eV Supercuerdas

28 High Electron Mobility Transistor --> Amplificadores de RF con SQUIs

29

30

31 Ice Cube AMANDA’s BIG BROTHER: 1 km 3 of Ice 4200 PMTs on 70 Strings m ~1 0 Angular Resolution to Mu Neutrinos IceTop Air Shower Array to Veto Downgoing Muons Digitized/Time-Stamped at 1 GHz Each PMT Started Deploying 2005; Construction Finished ~2011

32 Deteccion de anti-neutrinos en Laguna Verde como propuesta de la RAE

33 Proyecto Angra en Rio

34

35 Simulacion con root (50 K antineutrino events) Azul-- Espectro U235 Rojo-- Espectro Pu239 85% U235 15% Pu239

36 Kathy Turner, 24May Gamma-ray Large Area Space Telescope GLAST Large Area Telescope (LAT)‏ | GLAST will have a very broad science menu that includes: Systems with supermassive black holes (Active Galactic Nuclei)‏ Gamma-ray bursts (GRBs)‏ Pulsars Solar physics Origin of Cosmic Rays Probing the era of galaxy formation, optical- UV background light Solving the mystery of the high-energy unidentified sources Discovery! Particle Dark Matter? Other relics from the Big Bang? Extra dimensions? Testing Lorentz invariance. New source classes. GLAST will search for WIMP annihilation into gamma rays from the galactic center, galactic halo, galactic satellites and extragalactics Llaunched in 2008, will survey the gamma-ray sky in the energy range of 20MeV-300 GeV.

37 The existence of Nonbaryonic Dark Datter has been definitely established CDM is favoured Supersymmetric particles (in particular, neutralinos) are still among the best-motivated candidates New direct and indirect detection experiments will reach deep into theory parameter space The various indirect and direct detection methods are complementary to each other and to LHC The hunt is going on – many new experiments coming! The dark matter problem may be near its (s)solution… Conclusion


Download ppt "1 Materia Oscura y Neutrinos L. Villaseñor IFM-UMSNH Red de Altas Energías Taxco, Gro. 4-7 de marzo, 2009."

Similar presentations


Ads by Google