Presentation is loading. Please wait.

Presentation is loading. Please wait.

A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne.

Similar presentations


Presentation on theme: "A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne."— Presentation transcript:

1 A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne Systems - France IEMN- Electronics, Micro and Nanotechnologies Institute – France Nanyang Technological University/CINTRA – Singapore Ultrafast sensors For the Future

2 Ultrafast sensors for the Future C. Tripon-Canseliet 2  Optics metrology for electronics: specific needs for industrial applications o Electronics technological bottleneck: high frequency activation and functionality –Electronics/Electronics: DC to microwave domain –Optics/Optics: Terahertz domain –Optics/Electronics: Microwave to sub-mm range o Optics for classical electronic clock jitter limitations overcoming –Optical laser sources: highest resolution for electronic systems –Semiconductor technological procees: Integration access o Optics for ultra short pulse bandwith generation – Femtosecond risetime –Speed of light –Few tens to hundred fs time bandwidth: Highest external control frequency  Demonstration of optics in RF electronic systems: Active research field oLigth/matter interactions oIntegration of optics for microwave fucntionalities oNanotechnologies for improvment Introduction PC effect RF carrier generationRF magnitude switchingRF phase shiftingRF amplificationResearch strategy

3 Ultrafast sensors for the Future C. Tripon-Canseliet 3  Identified efficient RF functunalities for industrial applications: State-of-the-Art in microwave photonics  All optical signal processing  Beam scanning of antennas arrays (True Time Delays)  Very low noise generation (by signal injection)  Radio over Fiber (RoF) systems (high data rates > 100 Gbits/s)  Technological support for systems integration Building blocks  Sources (Lasers, LEDs)  Receivers (Photodiodes, photo transistors)  RF information transport on optical carriers (AM/PM/FM)  Information support (Optical waveguides)  Physical limitations scanning: Why not Nanoscale? oConfinement of light/matter interactions with diffraction effects oNanotechnology platform access Introduction Guided space Micro integration Free space Nano integration ? Introduction PC effect RF carrier generationRF magnitude switchingRF phase shiftingRF amplificationResearch strategy

4 Ultrafast sensors for the Future C. Tripon-Canseliet 4  One example among others: High frequency sampling  George Valley chart  « Three Ten law »: 10 GHz – 10 fs – 10 Bits Introduction Jitter Opening time Time Sampling pulses Opening uncertainty VV Optical clock need Introduction PC effect RF carrier generationRF magnitude switchingRF phase shiftingRF amplificationResearch strategy

5 Ultrafast sensors for the Future C. Tripon-Canseliet 5  Ligth/Matter interactions inventory: How we can play with light….  Light emission (Photoluminescence, Electroluminescence)  Light Absorption  Light scattering  Rayleigh scattering  Brillouin scattering  Raman scattering  Optical rotation  Case of bulk materials Introduction Bulk materialsDielectricsSemiconductorsMetals Reflection RefractionElectro-optics (1 st /2 nd orders) Acousto-optics Electro-absorption AbsorptionPhotoconductive effect Photovoltaïc effect Plasmonics DiffractionWave mixingGrating Critical parameters Anisotropy of media Polarisation state of light Introduction PC effect RF carrier generationRF magnitude switchingRF phase shiftingRF amplificationResearch strategy

6 Ultrafast sensors for the Future C. Tripon-Canseliet 6  Photoconductive effect description  Photoconductivity of semiconconductor materials (GaAs, GaAs BT) Generation of electron/hole pairs: Material conductivity enhancement Local photoresistance  Semiconducting materials family Energy band gap Absorption coeffcient( ~10 4 cm -1 ) Carriers dynamics Resistivity  Optical command Time domain shape Source compactness waveguide Introduction PC effect RF carrier generationRF magnitude switchingRF phase shiftingRF amplificationResearch strategy

7 Ultrafast sensors for the Future C. Tripon-Canseliet 7  Nano material-based microwave devices under optical control for next generation of EM sensors  Material and components approach : Physics, design, simulation, modeling  New semiconductors  Carbon nanotubes  Semiconductor Nanowires  Metal/dielectric or Metal/semiconductor interfaces  Devices and functions approach Physics, design, simulation, modeling  Modulation by SPP generation  Nano RF magnitude switching  Nano RF beam scanning by nano antennas (RF au THz) Characterization Associated signal processing functions Research strategy Introduction PC effect RF carrier generationRF magnitude switchingRF phase shiftingRF amplification

8 Ultrafast sensors for the Future C. Tripon-Canseliet 8  Microwave photonic characterization platform (UPMC)  Frequency and transient measurements (DC – 67 GHz)  CW laser sources (0.8 – 1.3 and 1.55 µm)  Femtosecond fibered and tunable laser source (0.8 and 1.55 µm)  Probe test environnement setup  under specific thermal conditions  Electrical and electromagnetic multiscale and multiphysic Design platform (UPMC)  Photoconductive effect homemade transient modeling in ADS software –Carriers time varying density equivalent electrical modeling –Associated time varying photoresistance Optical command characteristics power, spot size, wavelength Carriers dynamics (mobilities and lifetimes) Semiconducting material dark resistivity –Microwave circuit transient and frequency (after FFT) behaviour in microwave domain  Photoconductive effect design tool in 3D electromagnetic software Research strategy Introduction PC effect RF carrier generationRF magnitude switchingRF phase shiftingRF amplification

9 Ultrafast sensors for the Future C. Tripon-Canseliet 9  Actions plan (2008 – 2013) Research strategy Nano RF engineering Architecture Design Bulk materials GaAs, GaAs BT (0.8 µm) GaAs Sb (1 µm) GaAsSbN (1.55 µm) Thrust 1 Classical RF engineering Architecture Design Nano materials study Nanowires (GaAs) SW and MW Nanotubes (C) Surface effects (SPP) Thrust 2 Nano RF engineering Architecture Design Nano materials implementation Nanowires (GaAs) SW and MW Nanotubes (C) Thrust 3 Carriers dynamics (Mobiliies, lifetimes) Dark resisitivity Carriers transport (balisitc regime) Integration with MMIC planar technology (Process or deposition methods eligibility) Nano electromagnetism under infinite boundaries (Limitations of classical electromagnetics) Feasibilty of transmission of RF signals in nano access Interconnections Limitations under finite boundaries Arrays functionalities – Densification Nanoscale coupling effects Introduction PC effect RF carrier generationRF magnitude switchingRF phase shiftingRF amplification

10 Ultrafast sensors for the Future C. Tripon-Canseliet 10  Photoconductive effect homemade modelling (1/2)  Microwave signal processing by optics  Carrier density evolution in time under time-varying optical illumination Photoconductive effect Optical signal transient shape (magnitude, frequency modulation) Microwave switch dimensions (integrated technology) Output parameters Time domain photoresistance Rg(t) Input parameters S-parameters (Fourier transform) Substrate permittivity loss angle height carriers mobility + carriers lifetime + doping Substrate parameters Introduction PC effect RF carrier generationRF magnitude switchingRF phase shiftingRF amplification

11 Ultrafast sensors for the Future C. Tripon-Canseliet 11  Photoconductive effect homemade modelling (2/2)  Non linear electical modelling: Real-time control of microwave signals by optics f mod = 1 GHz Carriers densities (/cm 3 ) f RF = 10 GHz - f mod = 1 GHz Δτ = 50 ps Demonstration of modulation signal carrier transfert from optics to microwave carrier Photoconductive effect Research strategyIntroduction PC effect RF carrier generationRF magnitude switchingRF phase shiftingRF amplification Time (ns) RF output signal RF input signal Time (ns)

12 Ultrafast sensors for the Future C. Tripon-Canseliet 12  Photoconductive effect in microwave circuit: classical behaviour in microwave domain  Integration in a microwave circuit with line discontinuity  Magnitude switching / Phase shifting (high pass filter behaviour)  Microwave functionalities demonstration  Modulation transfer  Ultrafast sampling Digital coding with high data rate and Bits resolution access Ultrafast clock trigerring thanks to very low jitter optical source  Generation Integration in MMIC ascillator on standard GaAs substrate Side view of microwave photoconductive switch Associated RF efficiency Photoconductive effect Research strategyIntroduction PC effect RF carrier generationRF magnitude switchingRF phase shiftingRF amplification

13 Ultrafast sensors for the Future C. Tripon-Canseliet 13  Photoconductive effect for 5 GHz carrier generation  Integration in MMIC ascillator on standard GaAs substrate Measured transient Optically generated microwave carrier at a frequency of 5GHz MMIC top view (UMS PH25 foundry process) Oscillator tuned spectrums obtained by triangular modulation of incident optical power ( f mod 50 KHz, λ = 800 nm,) (1) 0–80 mW, (2) 0–130 mW and (3) 0–180 mW S. Faci, C. Tripon-Canseliet, A. Benlarbi-Delaï, G. Alquié, S. Formont,, J. Chazelas “Optical generation of microwave signal for FMCW radar applications”, Microwave and optical Technology Letters, Vol 51, Issue3, pp , March 2009 S. Faci, C. Tripon-Canseliet, G. Alquié, S. Formont,, J. Chazelas “Ook modulator using photoconductive feedback oscillator” Microwave and optical Technology Letters, Vol 52, Issue 9, pp , Sept 2010 Microwave carrier generation by optics Research strategyIntroduction RF carrier generation RF magnitude switchingRF phase shiftingRF amplification PC effect

14 Ultrafast sensors for the Future C. Tripon-Canseliet 14  Photoconductive effect for 5 GHz carrier generation  Ultrafast pulse illumination: Real-time control of microwave carrier generation by optics S. Faci, C. Tripon-Canseliet, A. Benlarbi-Delaï, G. Alquié, S. Formont,, J. Chazelas “Optical generation of microwave signal for FMCW radar applications”, Microwave and optical Technology Letters, Vol 51, Issue3, pp , March 2009 S. Faci, C. Tripon-Canseliet, G. Alquié, S. Formont,, J. Chazelas “Ook modulator using photoconductive feedback oscillator” Microwave and optical Technology Letters, Vol 52, Issue 9, pp , Sept 2010 MMIC top view (UMS PH25 foundry process) Experimental 5 GHz Optional tunability by DC bias RF signal setting time (50 ps) RF signal time window Optional tunability by optics RF signal frequency RF signal time window period RF transient output (1ns/div) RF transient output (200 ps/div) Microwave carrier generation by optics Research strategyIntroduction RF carrier generation RF magnitude switchingRF phase shiftingRF amplification PC effect

15 Ultrafast sensors for the Future C. Tripon-Canseliet 15  Photoconductive effect for ULB signal generation and emission  Integration in a microwave circuit: Microwave functionalities demonstration  UWB signal generation by ultrafast optical control with optically-controlled signal waveform shaping Experimental setup for optically-controlled UWB emitting system Simulated and measured reflection coefficient of the UWB antenna Guldner, N.; Tripon-Canseliet, Faci, S., C.; Alquie, G. “Optically-controlled UWB emission system” IEEE Microwave Conference, 2009 (EuMC), 2009, Page(s): Transfer function of the system Transient response of the emission antenna Experimental UWB photogenerated signal Microwave carrier generation by optics Research strategyIntroduction RF carrier generation RF magnitude switchingRF phase shiftingRF amplification PC effect

16 Ultrafast sensors for the Future C. Tripon-Canseliet 16  ON/OFF ratio enhancement under CW illumination: Confinement intensification  Membrane material  RF circuit mismatching (at OFF state) Technology On/Off ratio magnitude GHz Standard Membrane C. Tripon-Canseliet, S. Faci, K. Blary, G. Alquié, S. Formont, J. Chazelas SPIE International Conference on Application of photonic Technology, Quebec, Canada, June 2006 Interaction volume: 20x20x2 µm 3 Technology On/Off ratio magnitude GHz RF confined RF Confined Interaction volume: 1x1x0.5 µm 3  Carriers density increase  Capacitive behaviour lowering  Optimization of RF access design DGA contract n° ( ) Partners: IEMN and THALES Airborne Systems Microwave magnitude switching by optics Research strategyIntroduction RF magnitude switching RF phase shiftingRF amplification PC effect RF carrier generation

17 Ultrafast sensors for the Future C. Tripon-Canseliet 17  ON/OFF ratio enhancement under CW illumination: Confinement intensification Nanotechnology-based 0.8 µm  Dielectric nano waveguide implementation Active area dimensionsR 20 GHz [dB] R 40 GHz [dB] 1 x 1 x 0.5 µm3(P1) (P2) x 1 x 0.5 µm3 (P1) (P2) x 1 x 0.5 µm3(P1) (P2) Microwave magnitude switching by optics  Si, SiGe, GaAs nanowires implementation Optical incident power [mW] Resistivity [ Ω.cm] Conductivity [S.m -1 ] 0 1,13E+048,84E ,84E+011,71E ,60E+001,32E ,26E+001,38E+01 Experimental values of a SI GaAs photoconductivity under 0.8µm optical illumination 2009 MERLION program (French Singapore)– Nw-based electronics Partnership: IEMN- UPMC- NTU 0.5 µm Research strategyIntroduction RF magnitude switching RF phase shiftingRF amplification PC effect RF carrier generation

18 Ultrafast sensors for the Future C. Tripon-Canseliet 18  Nanotechnology-based 1.55µm: Quaternary semiconducting material buk material  Study of photoconductivity of quaternary semiconductors (GaAsSbN)  Design and tests of optically-controlled microwave switches Experimental magnitude ON/OFF 1.55 µm in frequency 2008 MERLION program (French Embassy) grant GaAsSbN process for optoelectronics Partnership: IEMN-UPMC- NTU K.H. Tan, C. Tripon-Canseliet, S. Faci, A.Pagies, M. Zegaoui, W. K.Loke, S. Wicaksono, S. F. Yoon, V. Magnin, D. Decoster, and J. Chazelas, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 22, NO. 15, AUGUST 1, 2010 K. H. Tan, S. F. Yoon, C. Tripon-Canseliet, W. K. Loke, S. Wicaksono, S. Faci, N. Saadsaoud, J. F. Lampin, D. Decoster, and J. Chazelas, APPLIED PHYSICS LETTERS 93, Carrier lifetime µm MPCS substrate structure 2010ANR/ A star joined program grant novel dilute nitride III-V Compound sEmiconductoR for 1550nm Ultra-Fast PhotoconductIve SwitchE (CERISE) Partnership: IEMN-UPMC – THALES - NTU Microwave magnitude switching by optics Research strategyIntroduction RF magnitude switching RF phase shiftingRF amplification PC effect RF carrier generation

19 Ultrafast sensors for the Future C. Tripon-Canseliet 19  Nanotechnology-based 1.55µm: CNT-based technology  Modeling and characterization of RF behaviour of MW or metallic SW CNTs  Study of photoconductivity of semiconducting SW CNTs under polarized  Design and test of CNT-based RF nano emitters  Design and tests of optically-controlled microwave phase shifters 2010 DGA/DSTA joined program grant Nano antennas Partnership: IEMN-UPMC – THALES - NTU Microwave phase shifting by optics A. Maiti, Caron Nanotubes: Band gap engineering with strain, Nature Materials 2 (2003) 440 J. Guo, M. A. Alam, Y. Yoon, Appl. Phys. Lett. 88, (2006). SEM photograph of vertical MW CNT processed by NTU CNT Examples of RF reflective (a) and filtering (b) structures for CNT RF properties extraction Research strategyIntroduction RF phase shifting RF amplification PC effect RF carrier generationRF magnitude switching

20 Ultrafast sensors for the Future C. Tripon-Canseliet  Research work focus (since 2007): Nanotechnology-based emitting 1.55µm  Study of photoconductice of SW CNT-based FET with transparent electrodes (ITO)  Design and tests of optically-controlled microwave amplifier with reported matching circuit in hybrid technology 20 Microwave amplification by optics 2010 ANR program grant Microwave Optically-Controlled Cnt-based emitting Architecture Partnership: IEMN-UPMC – THALES - NTU Nano RF amplifier Laser excitation Active quadripole Research strategyIntroduction RF amplification PC effect RF carrier generationRF magnitude switchingRF phase shifting

21 Ultrafast sensors for the Future C. Tripon-Canseliet 21  Eligibility by experimental demonstration of nano material efficiency in dynamic regime oNano wires/tubesl arrays oNano ribbons/cristals/shells  Extension of existing modeling and design tools to mutliscale components and devices  Prospect new technological process/deposition methods to open access to low cost components fabrication  Optimization of existing nano materials integration for microwave photonic purposes oElectronic access oLight interaction effects (plasmonics) Prospects M. S. Islam, N. P. Kobayashi, S-Y. Huang nd IEEE International Nanoelectronics Conference (INEC 2008), p Research strategyIntroductionRF amplification PC effect RF carrier generationRF magnitude switchingRF phase shifting

22 Ultrafast sensors for the Future C. Tripon-Canseliet  Collaborators oG. Alquié (L2E) oD. Decoster (IEMN) - Professor oJ. Chazelas (THALES) – Technical Director oK.L. Pey (NTU previously - - Professor oYoon S.F. - Tay B. K (NTU/EEE school) - Professors oD. Baillargeat (CINTRA) - Professor  PhD students and Post Docs oS. Faci – K. Louertani - N. Guldner – B. Guillot (L2E) oN. Saassaoud / M. Zegaoui / A. Pagies/ (IEMN) oA. Olivier (CINTRA/IEMN) oTeo E. – Tan D. 22 Thank you for your attention Acknowledgments Mimicking the Human being Nanotechnologies

23 Ultrafast sensors for the Future C. Tripon-Canseliet 23  Trust 1 : Study of metallic/semiconducting interfaces DGA contract n° Partners: IEMN – Thales Research and Technology Solution for confinement of light for RF modulation of optical carriers  Design, fabrication and characterization of a fully-integrated device θrθr n d + Δn R ΔRΔR Δn(V) = n d cos(  m t) θ ndnd kiki krkr ktkt EtEt EiEi ErEr kxkx θiθi θtθt z x n1n1 n2n2 Prism Metal Dielectric Prism Metal Dielectric Incident beam Attenuated beam Incident beam Surface plasmon Kretschmann configuration Otto configuration Research actions plan

24 Ultrafast sensors for the Future C. Tripon-Canseliet 24  Nanotechnologies: performances attendues  Propriétés électriques  Résistivité/conductivité, résistance de contact avec différents métaux  Propriétés électroniques  Transport / Dynamique des électrons (mobilités, vitesse de transit, temps de vie)  Propriétés optiques  Structure de bande / Sensibilité en longueur d’onde (Bande spectrale d’absorption)  Propriétés thermiques  Propriétés mécaniques  Techniques de fabrication Nano objets: vers des propriétés surprenantes Propriétés des CNTs compoarées aux matériaux semiconducteurs connus P. Avouris, M. Radosavljevic, S. J. Wind, CNT electronics and optoelectronics, NanoScience and Technology, Applied Physics of Carbon Nanotubes, Fundamentals of Theory, ISBN Résisitivté de nanofils d’InN – Résistivité avec et sans résistance de contact (Méthode à 4 pointes en noir) F. Werner, F. Limbach, M. Carsten, C. Denker, J.Malindretos, A. Rizzi, Nano Lett., Vol. 9, No. 4, 2009

25 Ultrafast sensors for the Future C. Tripon-Canseliet 25  Nanofils: Méthodes de fabrication pour composants électroniques et optoélectroniques  Structures homogènes  Jonctions PN  Transistors FET MOSFET  Nano engineering  Approche « Bottom-up »: croissance catalysée  Approche « Top-down »: gravure verticale  Mise en réseau de nanobjets Nano objets: Propriétés optoélectroniques Y. Li, F. Qian, J. Xiang, and C. M. Lieber MaterialsToday, Oct. 2006, 9, 10

26 Ultrafast sensors for the Future C. Tripon-Canseliet 26  Exemple de nanofils d’InP  Caractérisation optique: Electroluminescence Nano objets: Propriétés optoélectroniques X. Duan, Y. Huang*², Y.Cui, J.Wang* & C.M. Lieber, Nature, 409, Jan 2001, p µm p-n junction Diam: 65 et 68 nm 5 µm Diam: 39 et 49 nm

27 Ultrafast sensors for the Future C. Tripon-Canseliet 27  Exemple de nanofils de Si  Caractérisation optique : photoluminescence Nano objets: Propriétés optoélectroniques M.-H. Kim, T.-E. Park, U.-K. Kim, H.-J. Choi, G.-Y. Sung, J.- H. Shin, K. Suh th IEEE International Conference on g roup IV Photonics, Page(s): Th Stelzner, M Pietsch, G Andra, F Falk, E Ose and S Christiansen Nanotechnology 19 (2008)

28 Ultrafast sensors for the Future C. Tripon-Canseliet 28  Nanofils hétérostructurés (GaAs/GaP)  Caractérisation statique I(V) et optique (électroluminescence) Nano objets: Propriétés optoélectroniques Gudiksen, M., et al., Nature (2002) 415, 617 Wu, Y., et al., Nature (2004) 430, 61

29 Ultrafast sensors for the Future C. Tripon-Canseliet 29  Nanofils hétérostructurés (GaN/InGaN/GaN/AlGaN/GaN)  Caractérisation statique I(V) et optique (électroluminescence) Nano objets: Propriétés optoélectroniques Qian, F., et al., Nano Lett. (2005) 5, 2287

30 Ultrafast sensors for the Future C. Tripon-Canseliet 30  Nanotubes de Carbone  Propriétés optoélectroniques  Jonctions PN: Electroluminescence Nano objets: Propriétés optoélectroniques Chen, J., et al., Science (2005) 310, 1171

31 Ultrafast sensors for the Future C. Tripon-Canseliet 31  Nanotubes de Carbone  Représentation par un enroulement d’une feuille de graphène (arrangement 2D d’atomes de Carbone)  Nature métallique ou semiconductrice déterminée par  Diamètre  Type d’enroulement (mono/multi paroi)  Chiralité  Propriétés électroniques  Mobilités  Résistivité Nano objets: Propriétés optoélectroniques

32 Ultrafast sensors for the Future C. Tripon-Canseliet 32  Nanotubes de Carbone  Propriétés optoélectroniques  Photoconductivité: Dépendance en polarisation Nano objets: Propriétés optoélectroniques X. Qiu, M. Freitag, V. Perebeinos, P. Avouris Nano Lett. 5, 749 (2005). J. Guo, M. A. Alam, Y. Yoon, Appl. Phys. Lett. 88, (2006).

33 Ultrafast sensors for the Future C. Tripon-Canseliet 33  Nano objets : Synthèse  Composants électroniques: Diodes, Transistors Applications industrielles: circuits logiques (Mémoires)  Composants optoélectroniques: LEDs, (Photodiodes PIN) Applications industrielles: Ecrans Nano objets: Propriétés optoélectroniques Composants pour applications RFUtilisation des propriétés optiques Nano dispositifs intégrés à contrôle optique

34 Ultrafast sensors for the Future C. Tripon-Canseliet 34  Commande optique CW: Commutation d’amplitude Recherche du confinement de l’interaction  Augmentation de la densité de porteurs  Diminution du comportement capacitif RF du dispositif Premiers travaux effectués au L2E (2006)  Structure membrane  Augmentation de l’impédance des lignes d’accès: Réduction de la zone d’interaction Dispositifs intégrés RF à contrôle optique Technology On/Off ratio magnitude GHz Standard Membrane C. Tripon-Canseliet, S. Faci, K. Blary, G. Alquié, S. Formont, J. Chazelas SPIE International Conference on Application of photonic Technology, Quebec, Canada, Juin 2006

35 Ultrafast sensors for the Future C. Tripon-Canseliet 35  Commande optique CW: Commutation d’amplitude Recherche du confinement de l’interaction lumière/matière pour la commutation d’amplitude par l’optique  Réduction de la zone d’éclairement Dispositifs intégrés RF à contrôle optique

36 Ultrafast sensors for the Future C. Tripon-Canseliet 36  Exemple de nanofils d’InP  Caractérisations statiques I(V) Application à des jonctions croisées Nano objets: Propriétés optoélectroniques X. Duan, Y. Huang, Y.Cui, J.Wang & C.M. Lieber, Nature, 409, Jan 2001, p mm 10 nm Diam: 47 nm 1 mm Ni/In/Au contacts Diam: 45 nm 1 mm Ni/In/Au contact electrodes 2 mm Diam: 29 nm Diam: 40 nm n-n p-p n-p

37 Ultrafast sensors for the Future C. Tripon-Canseliet 37  Exemple de nanofils de Si  Caractérisation statique de transistors à effet de champ Nano objets: Propriétés optoélectroniques H. Lu et Al, Nano Letters(2008), 8, nm channel length 500 nm mV J. Martinez, R.V. Martinez, R. Garcia, IEEE-NANO th IEEE Conference on Nanotechnologies, Page(s):

38 Ultrafast sensors for the Future C. Tripon-Canseliet 38  Exemple de nanofils de Si (méthode top-down améliorée)  Caractérisation statique I(V) Nano objets: Propriétés optoélectroniques Jing Zhuge; Yu Tian; Runsheng Wang; Ru Huang; Yiqun Wang; Baoqin Chen; Jia Liu; Xing Zhang; Yangyuan Wang; IEEE Transactions on Nanotechnology, 9, Issue 1, 2010, Page(s):

39 Ultrafast sensors for the Future C. Tripon-Canseliet 39  Hybridation et mise en réseau de Nanofils (méthode Bottom-up)  Caractérisation statique I(V) Nano objets: Propriétés optoélectroniques M. S. Islam, N. P. Kobayashi, S-Y. Huang nd IEEE International Nanoelectronics Conference (INEC 2008), p


Download ppt "A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne."

Similar presentations


Ads by Google