Download presentation

Presentation is loading. Please wait.

Published byPenelope Bullis Modified over 2 years ago

1
Computer Vision TexPoint fonts used in EMF: AAA Niels Chr Overgaard 2010 Lecture 8: Structure from Motion RANSAC Structure from motion problem Structure estimation Motion estimation Structure and motion estimation Goal: To understand the general ideas and Some of the methods. Read: Forsyth & Ponce Chapter: 12 - 13

2
Datorseende vt-10Föreläsning 8 RANSAC Random sampling concensus RANSAC - is a general probabilistic method for model estimation given noisy and contaminated data. Example: Line fitting (15 noisy + 5 outliers) TheoryPractice

3
Datorseende vt-10Föreläsning 8 RANSAC – algorithm (outline) 1.Input: S = data points n = sample size k = number of iterations t = threshold for godness of fit ( d = sufficient number of inliers (optional) ) 2.Loop: repeat k times Pick n-sample at random from S Fit model to sample Count #inliers (i.e. points in S fitting the model within threshold t) Store sample and inliers if better than the previous one. ( Stop if #inliers > d (optional) ) 3.Finalization: Fit model to the inliers of the best sample obtained.

4
Datorseende vt-10Föreläsning 8 Example: line fitting (again) Recall our situation: 20 points given, 5 outliers: Sample size: n = 2. Number of iterations: k>6 (we use k=7) Threshold for goodness of fit: d=0.5 (wrt. scale in figure)

5
Datorseende vt-10Föreläsning 8 The first iteration:

6
Datorseende vt-10Föreläsning 8 The following 6 iterations:

7
Datorseende vt-10Föreläsning 8 The final line estimation: Notice: Exhaustive search for the line with most inliers requires 190 iterations!

8
Datorseende vt-10Föreläsning 8

9
RANSAC : How many iterations? Let w denote (#inliers)/(#data points). n = the sample size (n=2 for lines, n=4 for plane homographies) k iterations. The probability that a random n-sample is correct: The probability that k random n-sample contains at least one outlier each: Choose k so large that the fraction of failures is smaller than a given tolerance z.

10
Sampel storlek Andelen outliers N 5%10%20%25%30%40%50% 2235671117 33479111935 435913173472 54612172657146 64716243797293 748203354163588 8592644782721177 från Hartley & Zisserman RANSAC: k for p=1-z=0.99

11
Datorseende vt-10Föreläsning 8 x Bildplan Kamera- centrum X

12
Datorseende vt-10Föreläsning 8 The Structure from Motion Problem Many cameras (images) Many scene points Estimate all of them! Let us see how this is done in principle

13
Datorseende vt-10Föreläsning 8

14
3D-modell Exempel: Punkter Bilder Följda punkter

15
Datorseende vt-10Föreläsning 8 Exempel: Linjer och kägelsnitt Bilder 3D-modell

16
Datorseende vt-10Föreläsning 8

22
X

Similar presentations

OK

Fitting. We’ve learned how to detect edges, corners, blobs. Now what? We would like to form a higher-level, more compact representation of the features.

Fitting. We’ve learned how to detect edges, corners, blobs. Now what? We would like to form a higher-level, more compact representation of the features.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on carburetor exchange Ppt on cartesian product symbol Ppt on gulliver's travels part 3 and 4 Ppt on health care system Ppt on angle subtended by an arc of a circle Ppt on art and craft movement designs Ppt on carpooling system Ppt on power quality and energy management Ppt on linked list in java Ppt on number system in maths for class 9