Presentation is loading. Please wait.

Presentation is loading. Please wait.

Technologies de prétraitement Jean-Luc Wertz and Prof. Michel Paquot VALEBIO 23 mars 2012.

Similar presentations


Presentation on theme: "Technologies de prétraitement Jean-Luc Wertz and Prof. Michel Paquot VALEBIO 23 mars 2012."— Presentation transcript:

1 Technologies de prétraitement Jean-Luc Wertz and Prof. Michel Paquot VALEBIO 23 mars 2012

2 PLAN 1 Transformation de la biomasse en énergie et produits 1.1 La bioraffinerie 1.2 Voie biochimique 1.3 Voie thermochimique 2 Prétraitements 2.1 Prétraitements physiques 2.2 Prétraitements chimiques (p. ex. organosolv) 2.3 Prétraitements physico-chimiques (p. ex. steam explosion) 2.4 Prétraitements biologiques 2.5 Résumé

3 Définition Bioraffinage Le bioraffinage est le processus durable de transformation de la biomasse en: 1. bioénergie (biocarburants, électricité, chaleur) 2. produits biobasés (alimentation, produits chimiques, matériaux)

4 Raffineries de 1 ère et 2ème génération Première génération: raffinage à partir de biomasse alimentaire (canne à sucre,, grains de maïs, huile végétale…) Deuxième génération: raffinage à partir de biomasse non alimentaire (résidus agricoles et forestiers, déchets municipaux…)

5 Crude oil refining Crude oil Fuels (Energy) Building blocks (Petrochemistry) Specialties (e. g. lubricants)

6 Biomass refining Biomass Biofuels (Bioenergy) Building blocks (Agro-bio chemistry) Specialties (e. g. biolubricants)

7 Procédés de transformation Plateforme biochimique - Hydrolyse acide (dilué ou concentré) - Hydrolyse enzymatique Plateforme thermochimique - Combustion - Gazéification - Pyrolyse & traitement hydrothermique

8 Dilute acid hydrolysis

9 Concentrated acid hydrolysis

10 Enzymatic hydrolysis

11 Plateforme biochimique Défis - Prétraitement de la biomasse - Coût et efficacité des enzymes - Fermentation des sucres C5 and C6 - Valorisation de la lignine

12 Thermochemical conversion: primary routes

13 Gazéification + Fischer-Tropsch Conversion de la biomasse en gaz de synthèse ou syngas (H2 + CO) suivie de la conversion du syngas par synthèse Fischer-Tropsch en carburants liquides (BtL) Synthèse Fischer-Tropsch

14 Pyrolyse + conversion catalytique Conversion de la biomasse en bio-huiles, eux- mêmes convertis en carburants liquides

15 Schematic of the role of pretreatment Source: P. Kumar et al., 2009

16 Liquid hot water (LHW) Pretreatment with liquid water at high temperature and pressure Source: N. Mosier et al., 2005

17 Liquid hot water Performance: Strong removal of hemicelluloses but formation of inhibitor Inbicon’s hydrothermal pretreatment pilot plant Source: Inbicon

18 Weak and strong acid hydrolysis 1 Weak acid: -High-temperature (>160°C), continuous-flow process for low solids loadings -Low-temperature (<160°C) batch process for high solids loadings Performance: Strong removal of hemicelluloses but formation of inhibitors 2. Strong acid: Powerful agents for cellulose hydrolysis (no enzymes are needed after the strong acid process) Performance: High monomeric sugar yield but toxic and corrosive

19 Alkaline hydrolysis Well known in the pulp and paper industry as kraft pulping (or sulfate process) where wood chips are treated with a mixture of NaOH and Na2S Performance: Weak removal of hemicelluloses, strong removal of lignin

20 Extraction of lignin from Kraft pulp mill black liquor by the LignoBoost process Source: Metso, LignoBoost  Precipitation of lignin from black liquor by lowering the pH with CO2  Dewatering by filtration  Redispersion of lignin  Dewatering by filtration of the new slurry  Washing to produce lignin cakes

21 Organosolv processes Solvolytic cleavage of an alpha-aryl ether linkage by nucleophilic substitution; R=H or CH3; B=OH, OCH3 Performance: Weak removal of hemicelluloses, strong removal of lignin

22 Some important organosolv processes Process Name Solvent / Additive AsamWater + sodium carbonate + hydroxide + sulfide + methanol / Anthraquinone OrganocellWater + sodium hydroxide + methanol Alcell (APR)Water+ low aliphatic alcohol (e.g. ethanol) MiloxWater + formic acid + hydrogen peroxide (forming peroxyformic acid) AcetosolvWater + acetic acid/Hydrochloric acid AcetocellWater + acetic acid FormacellWater + acetic acid + formic acid FormosolvWater + formic acid + hydrochloric acid

23 Lignol’s process based on water/ethanol pre-treatment Source: Lignol

24 Oxidative delignification 1.Hydrogen peroxide treatment 2.Ozone treatment 3.Wet oxidation: treatment with oxygen or air in combination with water at high temperature and pressure Performance: Decrystalisation of cellulose, weak removal of hemicelluloses, strong removal of lignin

25 Room temperature ionic liquids Main cations and anions in ionic liquids Performance: Partial to complete dissolution of biomass with easy recovery of cellulose upon anti-solvent addition

26 Room temperature ionic liquids Different types of interaction present in imidazolinium-based ionic liquids Source: H. Olivier-Bourbigou, 2010

27 Room temperature ionic liquids Proposed mechanism for cellulose dissolution in EmimAc (1-ethyl- 3-methyl imidazolium acetate) Source: J. ZHANG et al., 2010

28 Source: S. Bose et al., 2010 Room temperature ionic liquids Hydrolysis of cellulose in a mixture of cellulases and tris-(2-hydroxyethyl) methyl ammonium methylsufate (HEMA) +

29 Steam explosion Schematic of the steam explosion process. 1, sample charging valve; 2, steam supply valve; 3, discharge valve; 4, condensate drain valve Performance: Strong removal of hemicelluloses but formation of inhibitors Principle: Treatment of biomass with high- pressure saturated steam, followed by a rapid reduction of steam pressure to obtain an explosive decompression Source: T. Jheo, 1998

30 Ammonia pre-treatments 1.Ammonia fiber explosion (AFEX™): biomass is exposed to liquid ammonia at high temperature and pressure and then pressure is reduced 2.Ammonia recycle percolation (ARP): aqueous ammonia passes through biomass at high temperature, after which ammonia is recovered Performance: Strong decrystallisation of cellulose, weak removal of hemicelluloses

31 Ammonia Fiber Expansion Process –Moist biomass is contacted with ammonia –Temperature and pressure are increased –Contents soak for specified time at temperature and ammonia load –Pressure is released –Ammonia is recovered and reused ReactorExplosion Ammonia Recovery Recovered Ammonia vapor Reactor Expansion Ammonia Recovery Biomass Treated Biomass Heat What is AFEX™? AFEX™ is a trademark of MBI Source: MBI

32 Glucan conversion for various AFEX treated Feed stocks Switchgrass Sugarcane Bagasse DDGS Rice straw Corn stover Miscanthus UT=No Pretreatment AFEX=Ammonia Pretreatment Biomass Conversion for Different Feedstocks Before and After AFEX Glucan conversion after enzymatic hydrolysis Excellent Biomass Conversion After AFEX Pretreatment Source: MBI

33 Carbon dioxide explosion High pressure carbon dioxide, and particularly supercritical carbon dioxide is injected into the reactor and then liberated by an explosive decompression Performance: Strong decrystalisation of cellulose, strong removal of hemicelluloses

34 Mechanical/alkaline pre-treatment Continuous mechanical pre-treatment with the aid of an alkali Performance: Weak removal of hemicelluloses, strong removal of lignin

35 Biological pre-treatments White-rot fungi are the most efficient in causing lignin degradation Source: L. Goodeve, 2003 Source: R.A. Blanchette, 2006 Performance: strong removal of hemicelluloses and lignin

36 XX: Major effect; X: Minor effect;; *: increases crystallinity; 1) alters lignin structure Inhibitors: furfural from hemicelluloses and hydroxymethylfurfural from cellulose and hemicelluloses PretreatmentDecrystallization of celluloseRemoval of hemicellulosesRemoval of ligninInhibitor formation Liquid hot water 1) XX Weak acid 1) XX AlkalineXXX OrganosolvXXX Wet oxidationXXX Steam explosion* 1) XX Ammonia fiber explosion (AFEX) XXX CO 2 explosionXX Mechanical/alkalineXXX BiologicalXX Performance summary

37 1.All pretreatments partially or totally remove hemicelluloses 2.Wet oxidation, AFEX and CO2 explosion reduce cellulose crystallinity 3.Alkaline, organosolv, wet oxidation, mechanical/alkaline and biological partially or totally remove lignin 4.High amounts of fermentation inhibitors are formed with liquid hot water, weak acid and steam explosion

38 Thank you for your attention


Download ppt "Technologies de prétraitement Jean-Luc Wertz and Prof. Michel Paquot VALEBIO 23 mars 2012."

Similar presentations


Ads by Google