Presentation is loading. Please wait.

Presentation is loading. Please wait.

Expert working group on solid spectroscopy data model – 1 st meeting – Wednesday 13 January – LPG – Grenoble in the frame of VAMDC & Europlanet RI programs.

Similar presentations


Presentation on theme: "Expert working group on solid spectroscopy data model – 1 st meeting – Wednesday 13 January – LPG – Grenoble in the frame of VAMDC & Europlanet RI programs."— Presentation transcript:

1 Expert working group on solid spectroscopy data model – 1 st meeting – Wednesday 13 January – LPG – Grenoble in the frame of VAMDC & Europlanet RI programs (also supported by ASOV – PCMI)

2 Aims of Data model Development of an European Solid Spectroscopy Data Model (ESSDaM) that we intend to propose to be, at least, an European standard for this field, and possibly an international one. Include in the data model schema, up to some limited complexity level the requirements of most of the European solid spectroscopy data producers Schedule: “completed” solid spectroscopy data model by March 2010 Dictionary and documented (v0.?) by May 2010

3 How to proceed start from the GhoSST core data model schema (v.0.2) and expand it extend mostly on: –new types of spectroscopy techniques (reflection and emission spectroscopy, Raman, fluorescence …) –other types of solids (minerals/rocks, organic matter, …) Complete, improve, homogeneize key-words

4 Aim of expert group Advise the VAMDC and Europlanet teams on the necessary (and optional) improvements and extensions of the solid spectroscopy data model schema Help to build some parts of data model schema –e.g. : minerals and rocks, organic matter, … Define (all) –the query key-words –the information key-words –the units Review the data model schema disctionary and documentation –April-May 2010 Test (with end-users) the implemented database query interface –End 2010 ?

5

6 Systèmes expérimentaux pour l’étude des solides et des surfaces planétaires ● Spectromètre infrarouge à transformée de Fourier Spectroscopie en transmission (films minces et cristaux) ● Microscopie infrarouge (instrument commun OSUG) Cartographie en transmission, réflexion ou ATR ● Spectro-gonio radiomètre réflectance spectrale bidirectionnelle des surfaces granulaires ● Cellule environnementale SERAC Mesure des pression d’équilibre et cinétiques (glaces, clathrates)

7 Matériaux planétaires solides Glaces, molécules volatile, hydrates, clathrates, … Organiques: simples, matériaux macromoléculaires, polymères, Roches, minéraux, sels, matériaux hydratés, … Autres composés (composés Soufrés, …) Echantillons naturels et Extraterrestres (météorites, IDP’s, …) Composants optiques (fenêtres, filtres, réflecteurs, …) Différents états physiques et texturaux : –Compacts (roche, glace,..) –Poudre (minéraux, neige, …) : surface –Films minces –Grain, Monocristaux, section polie, … –Mélanges, … –Température : 10 K - 700 K

8 Visible-IR transmission Spectroscopy Materials : ices, minerals, organic molecules and materials, optical materials pure (ices, minerals, …) ≠ phases and temperatures Mixtures (of ices, of minerals, …) of ≠ composition Compounds (hydrates, clathrates, polymers, organics, …) Synthetic, naturals Spectral Range : 0,65 - 200 µm Temperature : 10 K - 300 K Processes : UV-Vis irradiation Products: –level 1 : Transmission spectra –level 2 : Normalized absorbance spectra –level 3 : Absorption coefficients –level 4 : Optical constants –level 5 : Band list : positions, attributions, bands parameters

9 Produits : Spectres - Absorbance normalisée (niv. 2) Constantes optiques (niv. 4)

10 Vis-NIR bidirectional reflectance Spectroscopy of surfaces Materials : –H 2 O and CO 2 ices, minerals, rocks, organic materials, salts, sulfur compounds… Spectral Range : 0,3 – 4,8 µm Angular Range : lightning = 0-85°, observation = 0-80°, azimut = 0-180° Temperature : (80 K) - 230 K - 450 K Processes : controled atmosphere, adsorption, (Vis irradiation) Products: –level 1 : Reflection spectra –level 2 : BRDF : reflectance function –level 3 : scattering parameters –level 5 : Band list : positions, attributions, bands parameters

11 Spectro-imagerie infrarouge microscopique Materials : carbonaceous materials, naturals and synthetics, minerals and rocks Spectral Range : 1 - 20 µm Spatial Range : few µm Temperature : 300 K - 900 K - … Processes : controled Atmosphere Products: –level 1 : spectral maps –level 2 : band parameters maps –level 3 : composition maps –level 5 : Band list : positions, attributions, bands parameters

12

13 Produits : Tables de bandes (positions, attributions, paramètres,…) Bandes de la glace de CH 4

14 Mesures des propriétés spectrales (0,4 – 200 µm) des solides moléculaires Etude effets de : - Température - Phases - Composition - Composés - Irradiations UV Applications : - Calottes de Mars - Volcanisme de Io - Surface de Titan - … Spectromètre infrarouge à transformée de Fourier couplé à un système optique cryogénique (10 - 300 K) maintenu sous ultravide Solides : - Glaces - Clathrates, Hydrates, - Organiques, - Minéraux, …

15 Traceurs spectraux : Phase et température de H 2 O

16 Mesure de la réflectance spectrale (0,3 – 4,8 µm) bidirectionnelle des surfaces granulaires Etude effets de la : - Composition, - Taille et forme des grains, - Rugosité de surface, - Indices optiques, … Mesure spectres et fonctions de diffusion de : - Glaces, minéraux, - Organiques, - Matériaux géophysiques, … Applications : Spectro-imagerie spatiale Etude expérimentale du transfert radiatif dans les surfaces pour la télédétection

17 Powders Melted/solidified Sintered powder 90°C Condensed / vacuum Synthesis Sulphur BRDF

18

19 F-VAMDC 12 Dec 2008 Solid Spectroscopy Data Model (SSDM) B.Schmitt Laboratoire de Planétologie de Grenoble CNRS / UJF What are the important parameters in order to describe Solid Spectroscopy ?

20 - instrument - sample - spectra - band list - references  select the relevant spectroscopic and solid parameters for astrophysicists / planetologists  To be extended (other solids, other spectroscopies) GhoSST : Prototype Data model (transmission spectroscopy of molecular ices)

21 Instrument parameters Measurement technics Spectral / Angular / Spatial range resolution sampling

22 Instrument parameters Sample - Layers - Materials - Constituents : Molecules or minerals

23 Products : Spectra (levels 1 to 4) - Absorbance spectra (level. 2) Optical constants (level. 4)

24 Instrument parameters Spectra - Transmission spectra - Normalized absorbance - Absorption coefficients - Optical constants

25 Band list

26 Products : Band Lists (level 5) (positions, intensities, modes, …) Bands of CH 4 ice

27 Band list DM 1) Solid (molecular case) Molecule (or isotope) 2 nd molecule 1st molecule Proportion Solid familly (molecular, mineral, …) Compound type (pure, molec. mixt., clathrate, …) Phase type (cristalline, amorphous solid, liquid, …) Phase (Ic, Ih, IV, …) Sample temperature Annealing temperature and time Gas pressure and composition

28 Band list DM 2) Spectroscopy Frequency [+ uncertainty] Width (FWHM)[+ uncertainty] Peak Intensity (abs. coeff., or k)[+ uncertainty] Integrated intensity (abs. coeff., or k)[+ uncertainty] Band strength (vvs to vvw) transition mode (ex: [(2,1),(1,2),(3,3)]) mode type (ex: O-H stretching) Reference list (1st measurement/attribution) + analyzed frequency range ?

29 Development of band list sub-database and tools Band lists tables of : - positions, - width, - Intensities (peak, integrated) - vibration modes (+ type) - references  Data Model ~ 500 bandes sur 6 molécules (N 2, CO, CO 2, CH 4, C 2 H 6, SO 2 ) Data feeding interface, Search engine Visualisation, delivery

30

31 Laboratory Database For solid spectroscopy of planétological and astrophysical interest Current state B.Schmitt – P.Volcke Laboratoire de Planétologie de Grenoble CNRS / UJF

32 Data bases Visible to far IR transmission spectroscopy - transmission spectra - optical constants - band lists Spectroscopie vis-IR de surfaces en réflexion bidirectionnelle Micro-spectrométries Raman et Fluorescence (+ ENS-Lyon) Micro-spectroscopie infrarouge

33 Types of planetary solids - molecular solids : ices, volatile molecules, hydrates, clathrates - organic materials : simples, PAH, macromoleculars, polymers, … - minerals, salts, hydrated minerals, rocks, … - natural and extraterrestrial samples (meteorites, IDP's, Stardust,...) - optical componants (windows, filters, reflectors,...)

34 GhoSST : Main Functions  in development Database administration interface Search/Query engine Tools : interactive visualisation, comparisons Spectral convolution, unit conversions Data format converter,... Simulations transmission, reflection … Data delivery system (files, figures, references) User profile http://ghosst.obs.ujf-grenoble.fr http://ghosst.obs.ujf-grenoble.fr

35 Search forms

36

37 Search Results and Visualisation

38

39

40 Data delivery System Spectral file + uncertainties (units choice) Metadata (sample, measurement, validity range, …) Figure References to be cited

41

42 Laboratoire de Planétologie de Grenoble (LPG) (will merge as « Institut de Planétologie et d’Astrophysique de Grenoble » – IPAG - in 2011) GhoSST (formerly STSP) “Grenoble Astrophysics and Planetology Solid Spectroscopy and Thermodynamics" database service http://ghosst.obs.ujf-grenoble.fr GhoSST structure is under development (Europlanet RI + VAMDC) Involvement in VAMDC: Aims : 1) develop molecular physics data model for solids 2) build the molecular solids physical properties databases - Organization of a group of European data publishers and users (with Europlanet RI) Discuss the solid datamodel: spectroscopy (2010) and physical properties (2011)  1st work meetings (13 january 2010) with data producers Solid spectroscopy datamodel - expand the datamodel to other types of spectroscopic data and solids (2009-2010) - implement on the GhoSST database (2010) - implement some tools on the GhoSST database (2010) - validate and add sets of spectroscopy data to GhoSST database (2009-2011)

43 JRA-4 : Transforming IDIS into a Planetary Virtual Observatory Task “New databases” 1)Laboratory spectroscopic databases for solids : - Develop a generic database infrastructure for spectroscopic data of solids. - Feed new databases covering : - UV-to-FIR transmission spectroscopy of ices and organics (extend), - UV-to-NIR bidirectional reflection spectroscopy of solid surfaces (planetary analogue materials: ices and hydrated minerals) - NIR-MIR Emission spectroscopy of minerals (IPR/DLR-Berlin) - Integration to IDIS : production of interfaces for interoperability To be done in FP7...

44 Laboratoire de Planétologie de Grenoble (LPG) (will merge as « Institut de Planétologie et d’Astrophysique de Grenoble » – IPAG - in 2011) GhoSST (formerly STSP) “Grenoble Astrophysics and Planetology Solid Spectroscopy and Thermodynamics" database service - http://ghosst.obs.ujf-grenoble.fr http://ghosst.obs.ujf-grenoble.fr GhoSST structure is under development (Europlanet RI + VAMDC) VAMDC Participants and role: - Bernard Schmitt, DR2 CNRS Role: scientific manager for solid AM databases, user requirements, data models, registries and dictionaries, Quality Assurance and Documentation of data - Damien Albert, IE CNRS Role: technical manager, data models, XML Schema, software development, query language and protocols - Engineer VAMDC Role: XML Schema, building solid AM databases, Software development to access databases, query language and protocols - Post-doc VAMDC + INSU + ?? Role: user requirements, data models, registry and dictionaries, Documentation of data, Data validation. + database feeding - Expert group: Solid spectroscopists, physicists, geologists Role: scientific expertise, data producers and validation

45

46 Data model extensions to describe : –additionnal instrument techniques attributes to describe –Bidirectional / Biconic reflectance spectroscopy –Emission spectroscopy –IR + Raman + fluorescence micro-spectroscopies –new sample types ? –new spectra types or spectral products - additional types of materials Minerals / Rocks –Which classification to use ? –Which attributes to completely characterize one mineral ? Complex organics –How to characterize a complex synthetic or natural organic solid ?

47 Limitations of the evolution of data model to v1.0 These are quite hard limitations in order to keep this version 1.0 simple although as complete as possible for the most fundamental data. We favour wide spectroscopic and material type coverage in v1.0 to the detriment of complex samples. The major reasons are: 1) Time: we want to have an operational extended data model before end of February 2010 in order to start its implementation in the database infrastructure. 2) Funding and commitment by our programs (VAMDC and Europlanet): other developments are more important at this level, such as data query, visualization and conversion tools. So, any extension that will be proposed for v1.0 beyond these limitations needs to be very strongly argued! But they may be listed for next extensions v2.0, or 3.0 …. Most importantly, and easier to implement, is to carefully check that all necessary, but generic, parameters (key-words) are well included in the data model, both for the already implemented “aspects” and for the extensions.

48 In bold are “dimensions” that are already implemented in v0.2 - ranges: UV Visible Near, mid and far-IR sub-mm - materials: molecular solids minerals, rocks complex organic compounds - samples: Solids or liquids, molecular aggregates 1 (pure) or 2-3 material components in any type of mixture => no limit ! Molecular mixing, granular mixing, layering (2 layers) + core/mantle

49 - sample processes: Temperature cycling Simple irradiations (one source) - spectroscopic techniques: Transmission Reflection (bidirectional, biconic, …) Emission Raman Fluorescence - data and products: Spectra (raw and transformed) Absorption coefficient and Optical constants Spectral products from the other techniques Band list for molecular solids (+ H2O in/on minerals)

50 Analysis of surfaces and aerosols spectra of solar system objects identifications : band position, width and intensity (lab spectra, band list) Composition and physical state : - aerosols or icy surfaces : radiative transfert models (optical constants) - planetary surface : comparison, decomposition (lab reflection spectra) Triton Pluto


Download ppt "Expert working group on solid spectroscopy data model – 1 st meeting – Wednesday 13 January – LPG – Grenoble in the frame of VAMDC & Europlanet RI programs."

Similar presentations


Ads by Google