Presentation is loading. Please wait.

Presentation is loading. Please wait.

Overview %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%

Similar presentations


Presentation on theme: "Overview %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%"— Presentation transcript:

1 Overview %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%

2

3

4 %nakedsoftware.org opensource license, copyright 2010 stephane.poirier@oifii.org % %developed by Stephane Poirier, M.Sc. Optical Physics, Remote Sensing Application Software Developer (1991-2010) % %this function is part of oifii.org's ar\sp\ Microwave- derived 30-year Canada-Alaska Daily Temperature and Snowcover Databases library % %this function is part of oifii.org's ar\sp\'this folder' application (lauched with ar\sp\'this file'.m) %oifii.org's ar\sp\affiche_carte application is part of the oifii.org's ar\sp set of applications which %may also contain similar variant versions of this function with identical filename. % %A geophysical research paper about this work has been submitted in June 2009 for publication in JGR-Atmosphere %Royer, A. and Poirier S., Surface temperature spatial and temporal variations in North America from homogenized %satellite SMMR-SSM/I microwave measurements and reanalysis for 1979-2008, Journal of Geophysical Research - Atmosphere, %Submitted June 2009, http://www.oifii.org/tsatdb/Royer- Poirier_Microwave-derived-daily-surface- temperature_JGR2009JD012760_R2.pdf % %This study's database can be downloaded from the author web site at: %http://www.oifii.org/tsatdb/Royer-Poirier_Microwave-derived- daily-surface-temperature-db_1979-2008.zip % %this function is used to display the raw microwave raster data (NSIDC's SMMR and SSMI satellite, ref. nsidc.org) % %usage: % 20yymmmdd % %version 0.0, 20yymmmdd, spi, initial function draft % %nakedsoftware.org opensource license, copyright 2010 stephane.poirier@oifii.org

5 %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%

6 fct matlab qui renvoie le signification statistique du test de student sur une série Y

7 function [t_student]=student(x,y) if(length(x)~=length(y)) return; end n=length(x); dl=n-2; % coef des polynomes 1 er ordre % y = ax + b [p,s]=polyfit(x,y,1) ; a=p(1,1); b=p(1,2); % coefficient de correlation r = corrcoef(x,y) ; r = r(1,2) ; % ecart type residuel syx = sum(y.*y) - (sum(y)*sum(y)/n) ; syx = syx - a*a*(sum(x.*x)-(sum(x)*sum(x)/n)) ; syx = sqrt(syx/dl) ; % ecart type de y sy=syx/sqrt(1-r*r) ; % estimateur de ecart type de la pente Sa = a * sqrt((1-r*r)/(r*r*(dl))); delta_a = 1.96 * abs(Sa / sqrt(dl)); % sur la pente (si on veut comparer par rapport au coef beta0) % H0 : hypothèse d'une pente == à 0 pente0=0; t_pente=(a-pente0)/Sa ; % sur la droite de régression % disp(['hypothese de la pente : pente = ',num2str(pente0)]); % disp(['hypothese rejetee si : ',num2str(t_pente),... % ' > t de student ']); %-------------------------------------------% % TEST pour connaitre le % de signification % % MATRICE DE STUDENT % ne contient pas pour 1 degré de liberté student(1,:)= [0.995 0.99 0.975 0.95 0.90 0.80] ; student(2,:)=[9.92 6.96 4.30 2.92 1.89 1.061] ; student(3,:)=[5.84 4.54 3.18 2.35 1.64 0.978] ; student(4,:)=[4.60 3.75 2.78 2.13 1.53 0.941] ; student(5,:)=[4.03 3.36 2.57 2.02 1.48 0.920] ; student(6,:)=[3.71 3.14 2.45 1.94 1.44 0.906] ; student(7,:)=[3.50 3 2.36 1.90 1.42 0.896] ; student(8,:)=[3.36 2.90 2.31 1.86 1.40 0.889] ; student(9,:)=[3.25 2.82 2.26 1.83 1.38 0.883] ; student(10,:)=[3.17 2.76 2.23 1.81 1.37 0.879] ; student(11,:)=[3.11 2.72 2.20 1.80 1.36 0.876] ; student(12,:)=[3.06 2.68 2.18 1.78 1.36 0.873] ; student(13,:)=[3.01 2.65 2.16 1.77 1.35 0.870] ; student(14,:)=[2.98 2.62 2.14 1.76 1.34 0.868] ; student(15,:)=[2.95 2.60 2.13 1.75 1.34 0.866] ; student(16,:)=[2.92 2.58 2.12 1.75 1.34 0.865] ; student(17,:)=[2.90 2.57 2.11 1.74 1.33 0.863] ; student(18,:)=[2.88 2.55 2.10 1.73 1.33 0.862] ; student(19,:)=[2.86 2.54 2.09 1.73 1.33 0.861] ; student(20,:)=[2.84 2.53 2.09 1.72 1.32 0.860] ; student(21,:)=[2.83 2.52 2.08 1.72 1.32 0.859] ; student(22,:)=[2.82 2.51 2.07 1.72 1.32 0.858] ; student(23,:)=[2.81 2.50 2.07 1.71 1.32 0.858] ; student(24,:)=[2.80 2.49 2.06 1.71 1.32 0.857] ; student(25,:)=[2.79 2.48 2.06 1.71 1.32 0.856] ; student(26,:)=[2.78 2.48 2.06 1.71 1.32 0.856] ; student(27,:)=[2.77 2.47 2.05 1.70 1.31 0.855] ; student(28,:)=[2.76 2.47 2.05 1.70 1.31 0.855] ; student(29,:)=[2.76 2.46 2.04 1.70 1.31 0.854] ; student(30,:)=[2.75 2.46 2.04 1.70 1.31 0.854] ; %see schaum series formulas and mathematic tables page 258 %for extra values of n. It provides all the herein included %as well as 40, 60, 120 and infinity. if ~isempty(find(student(dl,:)<=t_pente)) t_student=find(student(dl,:)<=t_pente); t_student=t_student(1,1); %taking the first (highest percentil) result from t_student t_student=student(1,t_student); else t_student=0; end


Download ppt "Overview %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%"

Similar presentations


Ads by Google