Presentation is loading. Please wait.

Presentation is loading. Please wait.

Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 1 Virtual-Aircraft Design & Control of TransCRuiser – S&C study with CEASIOM Arthur Rizzi 1, P.

Similar presentations


Presentation on theme: "Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 1 Virtual-Aircraft Design & Control of TransCRuiser – S&C study with CEASIOM Arthur Rizzi 1, P."— Presentation transcript:

1 Flygteknik-2010 – Norra Latin Stockholm, Oct Virtual-Aircraft Design & Control of TransCRuiser – S&C study with CEASIOM Arthur Rizzi 1, P. Eliasson 2, T. Grabowski 3, J. Vos 4 1 Royal Institute of Technology (KTH), Stockholm, , Sweden 2 Swedish Defence Research Institute (FOI), Stockholm, , Sweden 3 Warsaw University of Technology (WUT), Warsaw, Poland 4 CFS Engineering (CFSE), 1015 Lausanne Switzerland

2 Flygteknik-2010 – Norra Latin Stockholm, Oct Contents  CEASIOM Design Tool – outcome of SimSAC  Analyze/improve flight dynamics  Specification & Design to Canard Configuration  Creation Tabular Aero Data  Comparison with WT data  Prediction Flying Qualities - Low & transonic speeds  Static stability – static margin: tradeoffs  Dynamic stability – linear & nonlinear (flight simulator)  Augmented Stability  Demo  Flight simulation

3 Flygteknik-2010 – Norra Latin Stockholm, Oct SimSAC EU-Project Partnership NOPARTNERCOUNTRY 1KTHSE 2Alenia AeronauticaIT 3Bristol UniversityUK 4CERFACSFR 5CFS EngineeringCH 6Dassault AviationFR 7DLRDE 8EADS-MDE 9FOISE 10Liverpool UniversityUK 11J2 Aircraft SolutionsUK 12ONERAFR 13Politecnico MilanoIT 14Saab AerosystemsSE 15TsAGIRU 16VZLUCZ 17Warsaw University of Technology PL EU FP 6 STREP project Project coordinator: Prof. A. Rizzi, KTH SimSAC: Simulating Aircraft Stability and Control Characteristics for Use in Conceptual Design

4 Flygteknik-2010 – Norra Latin Stockholm, Oct SimSAC Goal: Design Flight Control System Earlier Design Conceptual Phase Preliminary Use of …Handbook methods Linear Aerodyn ROMCFD & Optimize WT testingFlight testing standard Very highhighlowvery lowAero data SimSAC Very lowhigh medium Compute Aerodyn Dataset variable-fidelity CFD predict flight dynamics Use in conceptual design Aerodynamic Tools for S&C

5 Flygteknik-2010 – Norra Latin Stockholm, Oct CEASIOM Design Tool Flight Dynamics

6 Flygteknik-2010 – Norra Latin Stockholm, Oct TCR Design: SAAB Specification

7 Flygteknik-2010 – Norra Latin Stockholm, Oct Configuration Re-Design  Original TCR: poor trim ability  large ,   Different configurations investigated  Wing further fore (design parameter)  Three lifting surfaces  All-moving canard (vary location & size)  Design of wind tunnel model  One moving surface for longitudinal control  No engines

8 Flygteknik-2010 – Norra Latin Stockholm, Oct Design Choice – Static stability margin Trim condition CG ac M Static margin L Static stable Ma = AC = 38.9m Kn = 4.7%13.6%19.5%32.2% CG = 38.3m Kn grows with Ma Response heavy at high speed Dilemma !

9 Flygteknik-2010 – Norra Latin Stockholm, Oct Predict Flying Qualities: solve Flight Dyn Eqs n s – state vector (8) n A – inertia matrix n F – general forces Linearize (  stability derivatives...)

10 Flygteknik-2010 – Norra Latin Stockholm, Oct F aero Interpolation Process - Kriging Aero-data Database constructed DACE Kriging toolbox: Linear base model, Input & output scaled (0,1) Manual choice corr. length Data from source Mach α

11 Flygteknik-2010 – Norra Latin Stockholm, Oct Total Length m Total Wingspan (bref) m Total Canard Span m Total Height m Fuselage Diameter 3.70 m MAC 16.06/11.77 m, Wing reference area Sref = 489 m 2, Reference point, moment x = m, z = 0 m Center of gravity x = m, z = 0 m W&B/ACBuilder: J.Munoz, S Ricci,... Weight, Inertia & Balance

12 Flygteknik-2010 – Norra Latin Stockholm, Oct Control authority: Canard stall WT data Comparison C m (  ) for zero canard deflection Aero Data & Handling Qualities – Longitudinal Dynamics

13 Flygteknik-2010 – Norra Latin Stockholm, Oct m/s, 1km – 3km M 0.35 – 0.50 M.35 M.50  Canard  Phugoid Short period Trim & Flying Qualities – low speed Trim Sensitivity small

14 Flygteknik-2010 – Norra Latin Stockholm, Oct M.65  Canard M=1  Trim & Flying Qualities – transonic speed Phugoid  Short period Transonic dip

15 Flygteknik-2010 – Norra Latin Stockholm, Oct ms Flow Physics  transonic dip

16 Flygteknik-2010 – Norra Latin Stockholm, Oct Eigenvalues 276 m/s 10km,  = 0.5  All modes stable (barely...) Flight simulation  = -0.3 o : Slooowly damped  = -3.0 o : See-saw pitchup... Cobra manuver  AoA  attitude Linear & NonLinear Stability – Stick fixed Time Histories Wind gust - disturb α  small  large

17 Flygteknik-2010 – Norra Latin Stockholm, Oct Augmented Stability SAS OFF SAS ON    

18 Flygteknik-2010 – Norra Latin Stockholm, Oct ON OFF ON OFF ON Phugoid Short Period Dutch Roll Flying Qualities with Augmentation – low speed

19 Flygteknik-2010 – Norra Latin Stockholm, Oct Conclusions n CEASIOM proven useful ! –Trim & static margin chosen correctly –Good canard sizing & placement Verified by WT  no major pitfalls –Stability Augmentation  good flying qualities Low-speed stick-fixed qualities improved Transonic disturbance damped Canard authority sufficient –Allows concept designer to work with control tools to sort out: What can be fixed by control system What changes in configuration is needed n CEASIOM lives on ! –Community of users  Open software –Visit –Join us !

20 Flygteknik-2010 – Norra Latin Stockholm, Oct Thanks For Your Attention !

21 Flygteknik-2010 – Norra Latin Stockholm, Oct CEASIOM Predicts T-tail Flutter Stick Model : beam elements & lump masses Fin bending mode Hz Hor. Tail roll mode Hz Flutter frequency [Hz] Mach SMARTCADNASTRAN® V-g diagrams, sea-level Clamped node

22 Flygteknik-2010 – Norra Latin Stockholm, Oct Aircraft Motion: Non-Linear Dynamical System n s – state vector (8) n A – inertia matrix n F – general forces linearize

23 Flygteknik-2010 – Norra Latin Stockholm, Oct WT Model

24 Flygteknik-2010 – Norra Latin Stockholm, Oct M.97 Airspeed, Altitude & Mach number

25 Flygteknik-2010 – Norra Latin Stockholm, Oct What if done by Handbook Method Raymer volume coefficient Handbook methods not applicable to unconventional configs. such as the TCR ~ 0.1 l C = 28 m S C = 60 m 2 MAC = m S = 489 m 2 c C ≈ 0.29

26 Flygteknik-2010 – Norra Latin Stockholm, Oct TCR Design: Specification MTOW~ 180 t, R~ km, No Pax~ 200 M c = 0.97 ‘ Loose ideas’ to be Worked out: Payload

27 Flygteknik-2010 – Norra Latin Stockholm, Oct Fused Aerodynamic Dataset  Mach

28 Flygteknik-2010 – Norra Latin Stockholm, Oct

29 Flygteknik-2010 – Norra Latin Stockholm, Oct Fused Aerodynamic Dataset  Mach

30 Flygteknik-2010 – Norra Latin Stockholm, Oct n Evolution of pitching moment & lift coefficients with Mach/speed n Also breakpoints – no second-opinion – do we believe CFD ?? TCR - CFDsim - Mach dependence

31 Flygteknik-2010 – Norra Latin Stockholm, Oct Design Loops

32 Flygteknik-2010 – Norra Latin Stockholm, Oct Design Process

33 Flygteknik-2010 – Norra Latin Stockholm, Oct Flight Simulation – Transonic Cruise

34 Flygteknik-2010 – Norra Latin Stockholm, Oct Baseline Design n Initial sizing with Saab in-house method. n Baseline design: input for CEASIOM.

35 Flygteknik-2010 – Norra Latin Stockholm, Oct CEASIOM Design Analysis: XML params

36 Flygteknik-2010 – Norra Latin Stockholm, Oct TCR T-tail flutter Modal frequencies [Hz] Mode SMARTCADNASTRAN® Flutter dynamic pressure [Pa] Mach SMARTCADNASTRAN® ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙10 4 Flutter frequency [Hz] Mach SMARTCADNASTRAN® V-g diagrams, M ∞ =0.50, sea-level Clamped node Stick Model : beam elements & lump masses Fin bending mode Hz Hor. Tail roll mode Hz

37 Flygteknik-2010 – Norra Latin Stockholm, Oct Trim & longitudinal static stability Results from SDSA, for h=10 km and V = 240 m/s (M=0.8) Config. xWxW xCxC S C [m2]  trim [deg]  trim [deg] Static margin (%MAC) TCR-C TCR-C TCR-C TCR-C TCR-C2TCR-C17

38 Flygteknik-2010 – Norra Latin Stockholm, Oct Trim & longitudinal static stability Results from SDSA, for h=10 km and V = 240 m/s (M=0.8) Config. xWxW xCxC S C [m2]  trim [deg]  trim [deg] Static margin (%MAC) TCR-C TCR-C TCR-C TCR-C TCR-C17TCR-C8

39 Flygteknik-2010 – Norra Latin Stockholm, Oct Trim & longitudinal static stability Results from SDSA, for h=10 km and V = 240 m/s (M=0.8) Config. xWxW xCxC S C [m2]  trim [deg]  trim [deg] Static margin (%MAC) TCR-C TCR-C TCR-C TCR-C  C, static margin S C distance W-C

40 Flygteknik-2010 – Norra Latin Stockholm, Oct Construct Windtunnel Model Exterior shape - Export IGES PoliMi designed interior structure


Download ppt "Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 1 Virtual-Aircraft Design & Control of TransCRuiser – S&C study with CEASIOM Arthur Rizzi 1, P."

Similar presentations


Ads by Google