Presentation is loading. Please wait.

Presentation is loading. Please wait.

Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 1 Virtual-Aircraft Design & Control of TransCRuiser – S&C study with CEASIOM Arthur Rizzi 1, P.

Similar presentations


Presentation on theme: "Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 1 Virtual-Aircraft Design & Control of TransCRuiser – S&C study with CEASIOM Arthur Rizzi 1, P."— Presentation transcript:

1 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 1 Virtual-Aircraft Design & Control of TransCRuiser – S&C study with CEASIOM Arthur Rizzi 1, P. Eliasson 2, T. Grabowski 3, J. Vos 4 1 Royal Institute of Technology (KTH), Stockholm, 100 44, Sweden 2 Swedish Defence Research Institute (FOI), Stockholm, 164 90, Sweden 3 Warsaw University of Technology (WUT), 00-665 Warsaw, Poland 4 CFS Engineering (CFSE), 1015 Lausanne Switzerland

2 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 2 Contents  CEASIOM Design Tool – outcome of SimSAC  Analyze/improve flight dynamics  Specification & Design to Canard Configuration  Creation Tabular Aero Data  Comparison with WT data  Prediction Flying Qualities - Low & transonic speeds  Static stability – static margin: tradeoffs  Dynamic stability – linear & nonlinear (flight simulator)  Augmented Stability  Demo  Flight simulation

3 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 3 SimSAC EU-Project Partnership NOPARTNERCOUNTRY 1KTHSE 2Alenia AeronauticaIT 3Bristol UniversityUK 4CERFACSFR 5CFS EngineeringCH 6Dassault AviationFR 7DLRDE 8EADS-MDE 9FOISE 10Liverpool UniversityUK 11J2 Aircraft SolutionsUK 12ONERAFR 13Politecnico MilanoIT 14Saab AerosystemsSE 15TsAGIRU 16VZLUCZ 17Warsaw University of Technology PL EU FP 6 STREP project Project coordinator: Prof. A. Rizzi, KTH SimSAC: Simulating Aircraft Stability and Control Characteristics for Use in Conceptual Design

4 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 4 SimSAC Goal: Design Flight Control System Earlier Design Conceptual Phase Preliminary Use of …Handbook methods Linear Aerodyn ROMCFD & Optimize WT testingFlight testing standard Very highhighlowvery lowAero data SimSAC Very lowhigh medium Compute Aerodyn Dataset variable-fidelity CFD predict flight dynamics Use in conceptual design Aerodynamic Tools for S&C

5 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 5 CEASIOM Design Tool Flight Dynamics

6 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 6 TCR Design: SAAB Specification

7 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 7 Configuration Re-Design  Original TCR: poor trim ability  large ,   Different configurations investigated  Wing further fore (design parameter)  Three lifting surfaces  All-moving canard (vary location & size)  Design of wind tunnel model  One moving surface for longitudinal control  No engines

8 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 8 Design Choice – Static stability margin Trim condition CG ac M Static margin L Static stable Ma = 0.120.650.850.97 AC = 38.9m39.940.642.1 Kn = 4.7%13.6%19.5%32.2% CG = 38.3m Kn grows with Ma Response heavy at high speed Dilemma !

9 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 9 Predict Flying Qualities: solve Flight Dyn Eqs n s – state vector (8) n A – inertia matrix n F – general forces Linearize (  stability derivatives...)

10 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 10 F aero Interpolation Process - Kriging Aero-data Database constructed DACE Kriging toolbox: Linear base model, Input & output scaled (0,1) Manual choice corr. length Data from source Mach α

11 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 11 Total Length 63.87 m Total Wingspan (bref) 44.66 m Total Canard Span 12.00 m Total Height 11.70 m Fuselage Diameter 3.70 m MAC 16.06/11.77 m, Wing reference area Sref = 489 m 2, Reference point, moment x = 35.00 m, z = 0 m Center of gravity x = 38.33 m, z = 0 m W&B/ACBuilder: J.Munoz, S Ricci,... Weight, Inertia & Balance

12 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 12 Control authority: Canard stall WT data Comparison C m (  ) for zero canard deflection Aero Data & Handling Qualities – Longitudinal Dynamics

13 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 13 120-180 m/s, 1km – 3km M 0.35 – 0.50 M.35 M.50  Canard  Phugoid Short period Trim & Flying Qualities – low speed Trim Sensitivity small

14 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 14 M.65  Canard M=1  Trim & Flying Qualities – transonic speed Phugoid  Short period Transonic dip

15 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 15 220ms 250 270 286 Flow Physics  transonic dip

16 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 16 Eigenvalues 276 m/s 10km,  = 0.5  All modes stable (barely...) Flight simulation  = -0.3 o : Slooowly damped  = -3.0 o : See-saw pitchup... Cobra manuver  AoA  attitude Linear & NonLinear Stability – Stick fixed Time Histories Wind gust - disturb α  small  large

17 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 17 Augmented Stability SAS OFF SAS ON    

18 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 18 ON OFF ON OFF ON Phugoid Short Period Dutch Roll Flying Qualities with Augmentation – low speed

19 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 19 Conclusions n CEASIOM proven useful ! –Trim & static margin chosen correctly –Good canard sizing & placement Verified by WT  no major pitfalls –Stability Augmentation  good flying qualities Low-speed stick-fixed qualities improved Transonic disturbance damped Canard authority sufficient –Allows concept designer to work with control tools to sort out: What can be fixed by control system What changes in configuration is needed n CEASIOM lives on ! –Community of users  Open software –Visit www.ceasiom.comwww.ceasiom.com –Join us !

20 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 20 Thanks For Your Attention !

21 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 21 CEASIOM Predicts T-tail Flutter Stick Model : beam elements & lump masses Fin bending mode 1 1.6 Hz Hor. Tail roll mode 3 4.3 Hz Flutter frequency [Hz] Mach SMARTCADNASTRAN® 0.503.463.61 0.703.433.56 0.853.383.49 0.973.253.39 V-g diagrams, sea-level Clamped node

22 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 22 Aircraft Motion: Non-Linear Dynamical System n s – state vector (8) n A – inertia matrix n F – general forces linearize

23 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 23 WT Model

24 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 24 M.97 Airspeed, Altitude & Mach number

25 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 25 What if done by Handbook Method Raymer volume coefficient Handbook methods not applicable to unconventional configs. such as the TCR ~ 0.1 l C = 28 m S C = 60 m 2 MAC = 11.77 m S = 489 m 2 c C ≈ 0.29

26 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 26 TCR Design: Specification MTOW~ 180 t, R~ 10000 km, No Pax~ 200 M c = 0.97 ‘ Loose ideas’ to be Worked out: Payload

27 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 27 Fused Aerodynamic Dataset  Mach

28 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 28

29 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 29 Fused Aerodynamic Dataset  Mach

30 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 30 n Evolution of pitching moment & lift coefficients with Mach/speed n Also breakpoints – no second-opinion – do we believe CFD ?? TCR - CFDsim - Mach dependence

31 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 31 Design Loops

32 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 32 Design Process

33 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 33 Flight Simulation – Transonic Cruise

34 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 34 Baseline Design n Initial sizing with Saab in-house method. n Baseline design: input for CEASIOM.

35 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 35 CEASIOM Design Analysis: XML params

36 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 36 TCR T-tail flutter Modal frequencies [Hz] Mode SMARTCADNASTRAN® 11.60 22.632.62 34.324.34 44.634.59 58.16 68.718.69 713.3213.25 818.8718.10 918.9318.76 1020.0721.48 Flutter dynamic pressure [Pa] Mach SMARTCADNASTRAN® 0.505.66∙10 4 6.55∙10 4 0.705.54∙10 4 6.43∙10 4 0.855.43∙10 4 6.16∙10 4 0.975.38∙10 4 5.92∙10 4 Flutter frequency [Hz] Mach SMARTCADNASTRAN® 0.503.463.61 0.703.433.56 0.853.383.49 0.973.253.39 V-g diagrams, M ∞ =0.50, sea-level Clamped node Stick Model : beam elements & lump masses Fin bending mode 1 1.6 Hz Hor. Tail roll mode 3 4.3 Hz

37 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 37 Trim & longitudinal static stability Results from SDSA, for h=10 km and V = 240 m/s (M=0.8) Config. xWxW xCxC S C [m2]  trim [deg]  trim [deg] Static margin (%MAC) TCR-C20.260.13652.79.04.54 TCR-C170.260.017652.06.2-2.88 TCR-C80.260.017471.59.24.26 TCR-C150.260.12722.58.23.13 TCR-C2TCR-C17

38 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 38 Trim & longitudinal static stability Results from SDSA, for h=10 km and V = 240 m/s (M=0.8) Config. xWxW xCxC S C [m2]  trim [deg]  trim [deg] Static margin (%MAC) TCR-C20.260.13652.79.04.54 TCR-C170.260.017652.06.2-2.88 TCR-C80.260.017471.59.24.26 TCR-C150.260.12722.58.23.13 TCR-C17TCR-C8

39 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 39 Trim & longitudinal static stability Results from SDSA, for h=10 km and V = 240 m/s (M=0.8) Config. xWxW xCxC S C [m2]  trim [deg]  trim [deg] Static margin (%MAC) TCR-C20.260.13652.79.04.54 TCR-C170.260.017652.06.2-2.88 TCR-C80.260.017471.59.24.26 TCR-C150.260.12722.58.23.13  C, static margin S C distance W-C

40 Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 40 Construct Windtunnel Model Exterior shape - Export IGES PoliMi designed interior structure


Download ppt "Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 1 Virtual-Aircraft Design & Control of TransCRuiser – S&C study with CEASIOM Arthur Rizzi 1, P."

Similar presentations


Ads by Google