Presentation is loading. Please wait.

Presentation is loading. Please wait.

M. Bruschi-CSN1 Napoli 21 Settembre 2005 1 A. Bertin, M. Bruschi, S. De Castro, L. Fabbri, P. Faccioli, B. Giacobbe, F. Grimaldi, I. Massa, M. Piccinini,

Similar presentations


Presentation on theme: "M. Bruschi-CSN1 Napoli 21 Settembre 2005 1 A. Bertin, M. Bruschi, S. De Castro, L. Fabbri, P. Faccioli, B. Giacobbe, F. Grimaldi, I. Massa, M. Piccinini,"— Presentation transcript:

1 M. Bruschi-CSN1 Napoli 21 Settembre 2005 1 A. Bertin, M. Bruschi, S. De Castro, L. Fabbri, P. Faccioli, B. Giacobbe, F. Grimaldi, I. Massa, M. Piccinini, M. Poli, C. Sbarra, N. Semprini-Cesari, R. Spighi, M. Villa, A. Vitale, A. Zoccoli La partecipazione del gruppo di Bologna (luminometro) alle attivita’ di ATLAS

2 M. Bruschi-CSN1 Napoli 21 Settembre 2005 2 Contenuto Le attività del gruppo di Bologna in ATLAS:  Test delle schede di elettronica del LVL1 per le camere a Muoni  Luminometro (LUCID): elettronica di lettura e di trigger + simulazioni  Presentazione del progetto  L’elettronica di LUCID e stime (preliminari) dei costi Altri interessi del gruppo:  Partecipazione alla fisica & trigger di alto livello: fisica di alto Pt e diffrattiva  Partecipazione al computing

3 M. Bruschi-CSN1 Napoli 21 Settembre 2005 3 Attività sul LVL1 a Bologna Il test delle schede di elettronica del LVL1 (prodotte da Roma1) per le camere a Muoni, verrà effettuato a Bologna. Inizio: Settembre 2005. Test di: ~800 Pad-OR ~800 mother boards con test JTAG e ELMB Rate di test richiesto: 7 board/day Tempo previsto per il test del sistema: >6 mesi

4 M. Bruschi-CSN1 Napoli 21 Settembre 2005 4 Attività sul LVL1 a Bologna - II  Prima riunione e trasporto del materiale il 7 Settembre.  La scorsa settimana testate le prime 20 schede OR  Le rimanenti schede OR (~800) in viaggio verso Bologna.  Inizio lavoro sistematico sull’intero sistema (OR+mother) ad inizio Ottobre. 3 persone dedicate full-time al lavoro (2 su fondi universitari) + altre a rotazione.  Schedula dettagliata del test a Ottobre.

5 M. Bruschi-CSN1 Napoli 21 Settembre 2005 5 ATLAS -LUMINOSITY Importance of Luminosity measurements:  Cross sections for “Standard “ processes  t-tbar production  W/Z production  …… Theoretically known to better than 10% ……will improve in the future  New physics manifesting in deviation of  x BR relative the Standard Model predictions  Important precision measurements  Higgs production  x BR  tan  measurement for MSSM Higgs  ……

6 M. Bruschi-CSN1 Napoli 21 Settembre 2005 6 Relative precision on the measurement of  H  BR for various channels, as function of m H, at  Ldt = 300 fb –1. The dominant uncertainty is from Luminosity: 10% (open symbols), 5% (solid symbols). (ATLAS-TDR-15, May 1999) Higgs coupling tan  measurement Some examples Systematic error dominated by luminosity (ATLAS Physics TDR ) ATLAS –Luminosity (cont.)

7 M. Bruschi-CSN1 Napoli 21 Settembre 2005 7 ATLAS Luminosity Measurement Program Relative luminosity a DEDICATED luminosity monitor is needed  LUCID LUCID will provide the luminosity per BX as well Absolute luminosity –Goal: measure L with ≲ 2-3% accuracy –How: LHC Machine parameters Use ZDC in heavy ion runs to understand machine parameters rates of well-calculable processes:e.g. QED, QCD optical theorem: forward elastic rate + total inelastic rate: –needs ~full |η| coverage-ATLAS coverage limited –Use  tot measured by others (TOTEM) –Combine machine luminosity with optical theorem luminosity from Coulomb Scattering  Roman Pots ATLAS pursuing all options  Roman Pots

8 M. Bruschi-CSN1 Napoli 21 Settembre 2005 8 Motivations for LUCID Requirements:  A very radiation hard detector to be used as luminosity monitor  Good time resolution to resolve individual beam crossings  Insensitive to soft background particles  Pointing capability  A large dynamic range and no saturation at the highest luminosity  A simple, robust and cheap construction Solution: LUCID: LUminosity measurement using a Cherenkov Integrating Detector - The design is based on the Cherenkov Luminosity Counter (CLC) that is operating successfully at CDF. - Gas filled tubes around the beampipe act as a Cherenkov detector and detects particles from the I.P. that are above the Cherenkov threshold (2.7 GeV for pions and 9 MeV for electrons)

9 M. Bruschi-CSN1 Napoli 21 Settembre 2005 9 Basics of the detector 2 detectors x 200 Al tubes filled with C 4 F 10 or Isobutane at atmospheric pressure Winston cones at the end of the tubes focus the Cherenkov light onto quartz fibres Beampipe

10 M. Bruschi-CSN1 Napoli 21 Settembre 2005 10 The fibre read-out

11 M. Bruschi-CSN1 Napoli 21 Settembre 2005 11 General Considerations-I The purpose of this talk is to describe a possible baseline for the design of the ATLAS luminometer (LUCID) readout electronics and trigger scheme. Our aim (since last June) is to achieve, as soon as possible, the following points: Define the general scheme of the electronics Tune, by MC simulation and test beam, the final design parameters Provide a cost estimate per readout channel and time schedule for the realization of the electronics Start as soon as possible with the design in order to be ready in 2007

12 M. Bruschi-CSN1 Napoli 21 Settembre 2005 12 General Considerations-II Main Goals of the LUCID electronics: 1.For each triggered event (ROD level):  Number of tracks  Tracks time of arrival 2.Monitor level  Number of tracks per bunch  Tracks time of arrival per bunch 3.Trigger Level  Provide a fast trigger on “properly” filled bunch or on-time events  Provide a RAP-GAP vetoing for forward physics Strategy: exploit available FED solutions where possible

13 M. Bruschi-CSN1 Napoli 21 Settembre 2005 13 Signal from IP Background from sec. vtx Background from particles crossing fibers High Occupancy ~30% (at max. luminosity) Max. 3 tracks/tube (at max. luminosity) The amount of information to be handled @L1 can be encoded in 18 bit MAPMT and FE are in a low level radiation area for electronics (5 Gray/year) Known Facts 1) Amplitude meas. (2+1 bit @ L1) 2) Signal time-of-arrival measurement (1 bit @L1) Reject off - BX background sources (part of beam gas interactions, satellites BX, interactions originating off-IP) Provide a detailed BX structure monitor Guarantee the selection of events in time with the readout electronics of all the ATLAS detector  IMPORTANT TOOL FOR THE WHOLE ATLAS DATA TAKING 3) Hit fibers pattern (7x2 bit @L1)

14 M. Bruschi-CSN1 Napoli 21 Settembre 2005 14

15 M. Bruschi-CSN1 Napoli 21 Settembre 2005 15 System Architecture FRONT END (FEPCB) Similar to Roman Pot FE: OPERA/MAROC chip Input: MAPMT Output: DIGITIZED INFORMATION on LVDS Links (~0.5 Gb/s) 22x2 M A P M T LVDSLINKSLVDSLINKS VME BUS: TTCvi, CTRL sign.,etc ROS ROD T R I G G. CARDCARD HVFE CONTROL PC

16 M. Bruschi-CSN1 Napoli 21 Settembre 2005 16 Photomultiplicator Photons Preamp. Bipolar Fast Shaper Unipolar Fast Shaper Trigger Gain correction 4 discriminator thresholds MUX_OUT 1 Multiplexed current output (for channel monitor) TRIG_OUT 63 Trigger outputs x 2 bit/output/BX on 9 LVDS TX 6 Bits (2 n-4, n=0..5) 4 x 10 bits DACs SUM_OUT 9 Signal current outputs (sum over 7 out) THE OPERA/MAROC CHIP BLOCK FUNCTIONALITY DIAGRAM 9 1 63 Modifications for Lucid in blue text

17 M. Bruschi-CSN1 Napoli 21 Settembre 2005 17 OPERA/MAROC chip : LAYOUT – Technology: SiGe 0.35  m – Submitted mid-June, expected mid September – Chip area : 12 mm 2 (3.5mm *3.9mm) – 64 channels, 3.5V power supply – Power consumption : 350 mW – 228 pins –A lot of flexibility: Gain adjustment per channel (6 bits) 4 thresholds Multiplexed currentmeasurement 1 tube  7 readout channel 1 mapmt  9 tubes Output for LUCID: 9 current (sum over 7 channels) 1 current (multiplexed for channel control) 63 x 2 bit (80 MHz clock, for trigger)

18 M. Bruschi-CSN1 Napoli 21 Settembre 2005 18 Single Tube Readout Unit (7 channels) 15 ns int 10 ns reset 25 ns time LHC Clock LHC Int. Time ADC GATE TDC START to the trigger unit Fan Out TDC Window Programmable Comparator GI + ADC Multiplicity per Tube LUT 8 8 2 1 3 TUBE LUT (260 kB) 2 2 2 2 2 2 3 #1 #7 LVDS S/P 1/9 data from the MAROC CHIP MAROC CHIP SUM_OUT STRU Discr. (Prog. Thr +NR) TDC START STOP ADC GATE RAW DATA TO READOUT per STRU  ~ 5-6 Bytes/BX 1 2 18

19 M. Bruschi-CSN1 Napoli 21 Settembre 2005 19 stru 1 stru 2 stru 20 SUM_OUT 1_1 SUM_OUT 1_2 SUM_OUT 2_10 LVDS 1_1 LVDS 1_2 LVDS 2_9 LVDS S/P LVDS S/P 3 3 3 LVDS 1_1 (to trig. unit) LVDS 1_2 (to trig. unit) LVDS 2_1 (to trig. unit) LVDS 2_2 (to trig. unit) stru 2 TTCRQ i.f. opt. lnk from TTCIX VME P1 VME I.F DPRAM CTRL LOGIC 6 Bytes EVENT BUFFER s-LINK to ROS from CTRL LOGIC 160 MB/s s-LINK Busy LUCID ROD BOARD (22 units + spares) – VME 9U Analog_In 1 Analog_In 2 Analog_In 20 LVDS_In 1 LVDS_In 2 LVDS_In 18 ~200 Bytes/ev

20 M. Bruschi-CSN1 Napoli 21 Settembre 2005 20 Signal Buffer TTCRQ i.f. opt. lnk from TTCIX VME P1 VME I.F CTRL LOGIC s-LINK to ROS 160 MB/s s-LINK Busy LUCID TRIGGER BOARD (1 unit + spares) – VME 9U Detector1Detector1 Detector2Detector2 LVDS 1_1 LVDS 1_2 LVDS 22_1 LVDS 22_2 1 2 43 44 LVDS 23_1 LVDS 23_2 LVDS 44_1 LVDS 44_2 1 2 43 44 Signal Buffer FPGA based TRIGGER PROCESSING UNIT 44 ser. Inp 594 bit/BX 44 ser. Inp 594 bit/BX to the L0 trigger ~200 Bytes/ev Algorithm: MC simulations are needed

21 M. Bruschi-CSN1 Napoli 21 Settembre 2005 21 Description of the main building blocks of the readout electronics OPERA MAROC CHIP Adapted to LUCID needs from the RP design (ATLAS Orsay group) Gated Integrator + ADC 8 bit for the total sum should be enough Contacts have been taken with the LHCb preshower group (Clermont) for adapting their GI+ADC solution TDC 25 ns full range; 300 ps MAPMT resolution  7-8 bit CERN HPTDC will be used (32 channel at 2MHz  2 channels at 32 MHz, but still convenient) LOGIC Mainly Based on LUT (but still to be optimized) IMPLEMENTED on FPGAs Flexible and robust ENGINEERING Integration has to be studied but standard VME 9U will be probably preferred

22 M. Bruschi-CSN1 Napoli 21 Settembre 2005 22 First Costs Estimate TOTAL

23 M. Bruschi-CSN1 Napoli 21 Settembre 2005 23 Tentative Time Schedule (full production) (3 units) (25 units) (2 units)

24 M. Bruschi-CSN1 Napoli 21 Settembre 2005 24 Time Profile Goals of the project  Detector ready beginning 2007  FED and ROD ready in 2007 in useful time before the start of LHC operation  Trigger Board before the end of 2007 Funding Profile according to these goals:

25 M. Bruschi-CSN1 Napoli 21 Settembre 2005 25 Next Steps: System Optimization (Test Beam & MC) 1.Study the best solution for the tube readout (gas pressure, number and type of fibers per tube, MAPMT type)  Test Beam at DESY October Main goals of the Test beam (1/10-14/11):  Photon generation, transfer and losses  Generation, processing and transmission of electrical signals  Baseline Readout Device: MAPMT H 7546 (64 ch-UV glass win.) 2.MC Study to refine design parameter (TDC & ADC resolution), occupancy (# of channels), trigger algorithm

26 M. Bruschi-CSN1 Napoli 21 Settembre 2005 26 TEST BEAM: the MAPMT-FIBERS connection

27 M. Bruschi-CSN1 Napoli 21 Settembre 2005 27 Richieste finanziarie 2006 ( variazioni rispetto ai moduli in colore violetto ) Richieste finanziarie 2006:  M.I. : 21 k€ metabolismo  M.E. : 142.5 k€ metabolismo + test beam + C&I  Consumo: 21 k€ metabolismo (+5 k€ per l`attivita` sul LVL1)  Inventario: 17.5 k€ farm di computing per analisi (Tier 3 like) in comune con il gruppo BO-RPC (responsabile per I 2 gruppi: F. Semeria)  Costruzione apparati: 270k€ (<350k€ ) per elettronica LUCID Comprendenti PM, Cavi, crates etc.  Trasporti: 3 k€  (per l`attivita` sul LVL1)

28 M. Bruschi-CSN1 Napoli 21 Settembre 2005 28 Conclusions The Bologna Group activities in ATLAS are started I many different areas. The group will test the LVL1 boards (~830 Pad-OR and mother boards) in Bologna. The setting-up is started. The systematic work will begin in October. The group is involved in the LUCID detector (lumi monitor). Main activities are concerning: –MC simulations –Electronic design

29 M. Bruschi-CSN1 Napoli 21 Settembre 2005 29 BACKUP

30 M. Bruschi-CSN1 Napoli 21 Settembre 2005 30 Conclusions - II We are developing, based on the present knowledge of the detector, a baseline design of the LUCID electronics We consider this baseline being in a quite advanced stage and capable to fulfill the detector requirements (more: with the TDC options LUCID become an IMPORTANT DETECTOR for the ATLAS DATA TAKING) Forthcoming test beam and MC simulation will be valuable inputs to improve (in case, simplifying) the design We have already solutions at hand for critical devices (front- end chip, G.I.,ADC, TDC) that make us confident for a start of data taking together with LHC

31 M. Bruschi-CSN1 Napoli 21 Settembre 2005 31 More infos - Groups involved in LUCID: University of Alberta, University & INFN Bologna, CERN, University of Lund, University of Montreal, Max Planck Institute, University of Manchester (?), SACLAY Italy would represent ~50% of the group - Total cost of the project for INFN : ~ 400 k€ Would represent ~50% of the total cost

32 M. Bruschi-CSN1 Napoli 21 Settembre 2005 32 General Considerations-III For the description of the readout electronics I will refer essentially to the baseline of the detector described in the LOI Detector: formed by two parts each one consisting of 200 Cherenkov counters (tubes) 5 layers/section x 40 tubes/layer x 7 fibers/tube x 2 sections = 2800 fibers Signal: Prompt particles coming from the IP (primaries) will traverse the full length of the counter and generate a large amplitude signal in the photo-detector Background I: Particles originating from secondary interaction of prompt particles in the detector material and beam-pipe (secondaries) are softer and will traverse the counters at larger angles (multiple reflections), with shorter path lengths  Background I significantly smaller than signal Background II: Particles crossing the readout fibers will produce light only on the crossed fibers  Background II will have different pattern of hit fibers wrt signal

33 M. Bruschi-CSN1 Napoli 21 Settembre 2005 33 Signal amplitude measurement CLC have the important feature to guarantee a proportionality between the number of primary particles traversing a single tube and the resulting signal amplitude. These detectors response is not subjected to Landau fluctuations (present in scintillators) and the counter’s amplitude distribution will show distinct peaks for the different particle multiplicities hitting the counters.  LUCID, with an appropriate readout and trigger system can provide the Total Tracks multiplicity per BX

34 M. Bruschi-CSN1 Napoli 21 Settembre 2005 34 Signal time-of-arrival measurement A “precise” measurement of the arrival time of a track in the LUCID detector will help to: Reject off - BX background sources (part of beam gas interactions, satellites BX, interactions originating off-IP) Provide a detailed BX structure monitor Guarantee the selection of events in time with the readout electronics of all the ATLAS detector   IMPORTANT TOOL FOR THE WHOLE ATLAS DATA TAKING Hit fibers pattern Important to reject Background (essentially of type II)

35 M. Bruschi-CSN1 Napoli 21 Settembre 2005 35

36 M. Bruschi-CSN1 Napoli 21 Settembre 2005 36

37 M. Bruschi-CSN1 Napoli 21 Settembre 2005 37 Location of the detector Situation when the forward shielding is removed:

38 M. Bruschi-CSN1 Napoli 21 Settembre 2005 38


Download ppt "M. Bruschi-CSN1 Napoli 21 Settembre 2005 1 A. Bertin, M. Bruschi, S. De Castro, L. Fabbri, P. Faccioli, B. Giacobbe, F. Grimaldi, I. Massa, M. Piccinini,"

Similar presentations


Ads by Google